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MePAS Accelerator Physics Syllabus 

  1-2: Wednesday 
  Relativity/EM review, coordinates, cyclotrons 
  Weak focusing, transport matrices, dipole magnets, dispersion 

  3: Thursday 
  Edge focusing, quadrupoles, accelerator lattices, start FODO 

  4: Friday 
  Periodic lattices, FODO optics, emittance, phase space 

  5: Saturday 
  Insertions, beta functions, tunes, dispersion, chromaticity 

  6: Monday 
  Dispersion suppression, light source optics (DBA, TBA, TME) 

  7: Tuesday 
  (Nonlinear dynamics), Putting it all together 
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Parameterizing Particle Motion: Approximations 

  We have specified a coordinate system and 
made a few reasonable approximations: 
0) No local currents (beam in a near-vacuum) 
1)  Paraxial approximation: 

2) Perturbative coordinates: 

3) Transverse linear B field:  

4) Negligible E field: 

coordinate system 
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Review 

  Drift transport matrix: 

  Dipole transport matrix without focusing: 

  Dipole horizontal transport matrix including focusing and 
dispersion: 
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Focusing Without Bending 

  Quadrupole magnets have            but 
  No dipole field: design trajectory is straight 

  Like taking              in our previous analysis 
  This is one reason why we changed our parameterizations 

from  

horizontal dipole vertical dipole “normal” quadrupole “skew” quadrupole 
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Quadrupole Equations of Motion 

  This is truly a simple harmonic oscillator when K is 
constant: for a quadrupole of length L 
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Thick quadrupole transport matrix 
Swap places when K goes to -K 
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Thin Quadrupoles 

  In most accelerator uses, we can take L->0 with KL constant 
Use small-angle approximation to rewrite as a “thin” quadrupole 

This is just like a lens in classical optics with a focal length  
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Thin quadrupole transport matrix 
Swap places when K goes to -K 
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Picturing Drift and Quadrupole Motion 

KL=0.5 m-1, f=2m KL=0.1 m-1, f=20m 

KL=20 m-1, f=0.05m KL=-0.1 m-1, f=-20m 
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Picturing Drift and Quadrupole Motion 

KL=0.5 m-1, f=2m KL=0.1 m-1, f=20m 

KL=20 m-1, f=0.05m KL=-0.1 m-1, f=-20m 

Thin Quadrupole Approximations 
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Dipole Edge Focusing 

  Quadrupoles are not the only place we get focusing! 
  Recall our 3x3 sector dipole matrix 

Vertical motion is just a drift of length 

  But this magnet is curved and therefore not easy to build 
In particular, the ends are “tilted” to be     to design trajectory  

L = ρθ

⊥
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Sector and Rectangular Bends 

  Sector bend (sbend) 
  Beam design entry/exit angles are ⊥ to end faces 

  Simpler to conceptualize, but harder to build 
  Rectangular bend (rbend) 

  Beam design entry/exit angles are half of bend angle 

  Easier to build, but must include effects of edge focusing 
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Dipole End Angles 

  Different transverse positions see different B field! 
  Particles displaced by +x see B field later than design 
  Particles displaced by –x see B field earlier than design 

Design trajectory particle 

-x displaced particle 
enters B field earlier 
than design trajectory 
particle 

+x displaced particle 
enters B field later 
than design trajectory 
particle 
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Dipole End Angles 

  We treat general case of symmetric dipole end angles 
  Superposition: looks like wedges on end of sector dipole 
  Rectangular bends are a special case 
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Kick from a Thin Wedge 

  The edge focusing calculation requires the kick from 
a thin wedge 

What is L? (distance in wedge) 

  Quadrupole-like defocusing term, linear in position 
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Dipole Matrix with Ends 

  The matrix of a dipole with thick ends is then 

  Rectangular bend is special case where α=θ/2 
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What About Vertical Edge Focusing? 

  Field lines go from –y to +y for a 
positively charged particle 
  Bx <0 for y>0; Bx>0 for y<0 

•  Net focusing! 
  Field goes like sin(α) 

•  get cos(α) from integral length 
  Quadrupole-like focusing  

N 

S 

Side view 
Overhead 
view, α>0 

∆y� =
(−Bxy sinα/l)(l/ cosα)

(Bρ)
= − tanα

ρ
y
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========== Almost There ========== 
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Matrix Example: Strong Focusing 

  Consider a doublet of thin quadrupoles separated by drift L 

There is net focusing given by this alternating gradient system 
A fundamental point of optics, and of accelerator strong focusing 
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Strong Focusing: Another View 

For this to be focusing, x’ must have opposite sign of x 

Equal strength doublet is net focusing under condition 
that each lens’s focal length is greater than distance 
between them 
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Strong Focusing Homework 

  The previous argument also works when the defocusing 
quadrupole comes before the focusing quadrupole 
  Homework: Calculate the net focusing condition for this system 
  Since quadrupoles focus in one plane and defocus in the other, 

alternating quadrupoles continuously produces a system that is 
overall net focusing and stable 

fF

fD

Horizontal 

Vertical 

FODO lattice: Periodic! F    O    D    O 
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More Math: Hill’s Equation 

  Let’s go back to our equations of motion for 

What happens when we let the focusing K vary with s? 
Also assume K is periodic in s with some periodicity C 

This periodicity can be one revolution around the accelerator or 
as small as one repeated “cell” of the layout 

  (Such as a FODO cell in the previous slide) 

The simple harmonic oscillator equation with a 
 periodically varying spring constant K(s) is 
 known as Hill’s Equation 
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x�� +Kx = 0 y�� −Ky = 0 K ≡ 1

(Bρ)

�
∂By

∂x

�
[K] = [length]−2

K(s+ C) = K(s)x�� +K(s)x = 0 K(s) ≡ 1

(Bρ)

�
∂By

∂x

�
(s)



T. Satogata / Fall 2011                  MePAS Intro to Accel Physics 22 

Hill’s Equation Solution Ansatz 

  Solution is a quasi-periodic harmonic oscillator 

where w(s) is periodic in C but the phase φ is not!! 
Substitute this educated guess (“ansatz”) to find 

For          and         to be independent of     , coefficients 
of sin and cos terms must vanish identically   
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Courant-Snyder Parameters 

  Notice that in both equations               so we can scale this 
out and define a new set of functions, Courant-Snyder 
Parameters or Twiss Parameters  

w�� − (k2/w3) +Kw = 0 ⇒ w3(w�� +Kw) = k2
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β(s), α(s), γ(s) are all periodic in C

φ(s) is not periodic in C
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Towards The Matrix Solution 

  What is the matrix for this Hill’s Equation solution? 

This all looks pretty familiar and pretty tedious… 
We have done this many times so we skip to the solution 
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Interesting Observations 

         is independent of s: betatron phase advance again 
  Determinant of matrix M is still 1! (Check!) 
  Still looks like a rotation and some scaling 
  M can be written down in a beautiful and deep way 

and remember 
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========== Once Again  ========== 


