Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Lecture 4/7: Stability, FODO Cells, More Lattice Functions, Emittance, Chromaticity (and maybe Dispersion)

Todd Satogata (Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2011-MePAS

Friday, September 30, 2011

1

Review

Hill's equation x'' + K(s)x = 0quasi – periodic ansatz solution $x(s) = A\sqrt{\beta(s)}\cos[\phi(s) + \phi_0]$ $\beta(s) = \beta(s+C) \quad \gamma(s) \equiv \frac{1+\alpha(s)^2}{\beta(s)}$ $\alpha(s) \equiv -\frac{1}{2}\beta'(s) \quad \phi(s) = \int \frac{ds}{\beta(s)}$ $\begin{pmatrix} x \\ x' \end{pmatrix}_{s_0+C} = \begin{pmatrix} \cos \Delta \phi_C + \alpha(s) \sin \Delta \phi_C & \beta(s) \sin \Delta \phi_C \\ -\gamma(s) \sin \Delta \phi_C & \cos \Delta \phi_C - \alpha(s) \sin \Delta \phi_C \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0+C}$ $\Delta \phi_C = \int^{s_0 + C} \frac{ds}{\beta(s)} \qquad \text{Tr } M = 2 \cos \Delta \phi_C$ betatron phase advance $M = I \cos \Delta \phi_C + J \sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix}$ $J^2 = -I \quad \Rightarrow \quad M = e^{J(s)\Delta\phi_C}$ Jefferson Lab T. Satogata / Fall 2011 MePAS Intro to Accel Physics 2

Transport Matrix Stability Criteria

- For long systems (rings) we want $M^n \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$ stable as $n \to \infty$
 - If 2x2 M has eigenvectors (V_1, V_2) and eigenvalues (λ_1, λ_2) :

$$M^n \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} = A\lambda_1^n V_1 + B\lambda_2^n V_2$$

- M is also unimodular (det M=1) so $\lambda_{1,2} = e^{\pm i\phi}$ with complex ϕ
- For $\lambda_{1,2}^n$ to remain bounded, ϕ must be real
- We can always transform M into diagonal form with the eigenvalues on the diagonal (since det M=1); this does not change the trace of the matrix

$$e^{i\phi} + e^{-i\phi} = 2\cos\phi = \operatorname{Tr} M$$

• The **stability requirement** for these types of matrices is then

 ϕ real \Rightarrow

$$-1 \le \frac{1}{2} \operatorname{Tr} M \le 1$$

efferson Lab

- Select periodicity between centers of focusing quads
 - A natural periodicity if we want to calculate maximum β(s)

$$M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{L}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{L}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix}$$
$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & \frac{L^2}{4f} + L \\ \frac{L^2}{16f^3} - \frac{L}{4f^2} & 1 - \frac{L^2}{8f^2} \end{pmatrix} \quad \text{Tr } M = 2\cos\Delta\phi_C = 2 - \frac{L^2}{4f^2}$$

$$1 - \frac{L^2}{8f^2} = \cos\Delta\phi_C = 1 - 2\sin^2\frac{\Delta\phi_C}{2} \quad \Rightarrow \quad \sin\frac{\Delta\phi_C}{2} = \pm\frac{L}{4f}$$

• $\Delta \phi_C$ only has real solutions (stability) if $\frac{L}{A} < f$

T. Satogata / Fall 2011

Jefferson Lab

• What is $\hat{\beta}$?

Jefferson Lab

• A natural periodicity if we want to calculate maximum $\beta(s)$

$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & \frac{L^2}{4f} + L \\ \frac{L^2}{16f^3} - \frac{L}{4f^2} & 1 - \frac{L^2}{8f^2} \end{pmatrix} \Leftrightarrow M_{12} = \beta \sin \Delta \phi_C$$
$$\hat{\beta} \sin \Delta \phi_C = \frac{L^2}{4f} + L = L \left(1 + \sin \frac{\Delta \phi_C}{2} \right) \qquad \hat{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 + \sin \frac{\Delta \phi_C}{2} \right)$$

 Follow a similar strategy reversing F/D quadrupoles to find the minimum β(s) within a FODO cell (center of D quad)

$$\check{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 - \sin \frac{\Delta \phi_C}{2} \right)$$

- This is a picture of a FODO lattice, showing contours of $\pm \sqrt{\beta(s)}$ since the particle motion goes like $x(s) = A\sqrt{\beta(s)} \cos[\phi(s) + \phi_0]$
 - This also shows a particle oscillating through the lattice
 - Note that √β(s) provides an "envelope" for particle oscillations
 √β(s) is sometimes called the envelope function for the lattice
 - Min beta is at defocusing quads, max beta is at focusing quads
 - 6.5 periodic FODO cells per betatron oscillation

 $\Rightarrow \Delta \phi_C = 360^{\circ}/6.5 \approx 55^{\circ}$

7

- 1/6 of one of two RHIC synchrotron rings, injection lattice
 - FODO cell length is about L=30m
 - Phase advance per FODO cell is about $\Delta \phi_C = 77^\circ = 1.344$ rad

$$\hat{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 + \sin \frac{\Delta \phi_C}{2} \right) \approx 53 \text{ m}$$
$$\check{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 - \sin \frac{\Delta \phi_C}{2} \right) \approx 8.7 \text{ m}$$

T. Satogata / Fall 2011

Jefferson Lab

General Non-Periodic Transport Matrix

 We can parameterize a general non-periodic transport matrix from s₁ to s₂ using the lattice parameters

$$M(s_2) = \begin{pmatrix} \sqrt{\frac{\beta(s_2)}{\beta(s_1)}} [\cos \Delta \phi + \alpha(s_1) \sin \Delta \phi] & \sqrt{\beta(s_1)\beta(s_2)} \sin \Delta \phi \\ -\frac{[\alpha(s_2) - \alpha(s_1)] \cos \Delta \phi + [1 + \alpha(s_1)\alpha(s_2)] \sin \Delta \phi}{\sqrt{\beta(s_1)\beta(s_2)}} & \sqrt{\frac{\beta(s_1)}{\beta(s_2)}} [\cos \Delta \phi - \alpha(s_2) \sin \Delta \phi] \end{pmatrix}$$

• This does not have a pretty form like the periodic matrix However both can be expressed as $M = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix}$

where the C and S terms are cosine-like and sine-like; the second row is the s-derivative of the first row!

The most common use of this matrix is the m₁₂ term:

 $\Delta x(s_2) = \sqrt{\beta(s_1)\beta(s_2)} \sin(\Delta \phi) x'(s_1)$

Effect of angle kick on downstream position

9

(Deriving the Non-Periodic Transport Matrix)

 $x(s) = Aw(s)\cos\phi(s) + Bw(s)\sin\phi(s)$

$$x'(s) = A\left(w'(s)\cos\phi(s) - \frac{\sin\phi(s)}{w(s)}\right) + B\left(w'(s)\sin\phi(s) + \frac{\cos\phi(s)}{w(s)}\right)$$

Calculate A, B in terms of initial conditions (x_0, x'_0) and (w_0, ϕ_0)

$$A = \left(w_0' \sin \phi_0 + \frac{\cos \phi_0}{w_0}\right) x_0 - (w_0 \sin \phi_0) x_0'$$
$$B = -\left(w_0' \cos \phi_0 - \frac{\sin \phi_0}{w_0}\right) x_0 + (w_0 \cos \phi_0) x_0'$$
$$(x(s)) = (m_1)$$

Substitute (A,B) and put into matrix form: $\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$

$$m_{11}(s) = \frac{w(s)}{w_0} \cos \Delta \phi - w(s)w'_0 \sin \Delta \phi \qquad \qquad \Delta \phi \equiv \phi(s) - \phi_0$$
$$w(s) = \sqrt{\beta(s)}$$

 $m_{12}(s) = w(s)w_0 \sin \Delta\phi$

lefferson Lab

$$m_{21}(s) = -\frac{1 + w(s)w_0w'(s)w'_0}{w(s)w_0}\sin\Delta\phi - \left[\frac{w'_0}{w(s)} - \frac{w'(s)}{w_0}\right]\cos\Delta\phi$$

$$m_{22}(s) = \frac{w_0}{w(s)} \cos \Delta \phi + w_0 w' \sin \Delta \phi$$

Propagating Lattice Parameters

• If I have $(\beta, \alpha, \gamma)(s_1)$ and I have the transport matrix $M(s_1, s_2)$ that transports particles from $s_1 \rightarrow s_2$, how do I find the new lattice parameters $(\beta, \alpha, \gamma)(s_2)$?

 $M(s_1, s_1 + C) = I \cos \mu + J \sin \mu = \begin{pmatrix} \cos \mu + \alpha(s_1) \sin \mu & \beta(s_1) \sin \mu \\ -\gamma(s_1) \sin \mu & \cos \mu - \alpha(s_1) \sin \mu \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$

The J(s) matrices at s_1 , s_2 are related by

$$J(s_2) = M(s_1, s_2)J(s_1)M^{-1}(s_1, s_2)$$

Then expand, using det M=1

$$J(s_{2}) = \begin{pmatrix} \alpha(s_{2}) & \beta(s_{2}) \\ -\gamma(s_{2}) & -\alpha(s_{2}) \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} \alpha(s_{1}) & \beta(s_{1}) \\ -\gamma(s_{1}) & -\alpha(s_{1}) \end{pmatrix} \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$
$$\begin{pmatrix} \beta(s_{2}) \\ \alpha(s_{2}) \\ \gamma(s_{2}) \end{pmatrix} = \begin{pmatrix} m_{11}^{2} & -2m_{11}m_{12} & m_{12}^{2} \\ -m_{11}m_{21} & m_{11}m_{22} + m_{12}m_{21} & -m_{12}m_{22} \\ m_{21}^{2} & -2m_{21}m_{22} & m_{22}^{2} \end{pmatrix} \begin{pmatrix} \beta(s_{1}) \\ \alpha(s_{1}) \\ \gamma(s_{1}) \end{pmatrix}$$
$$Jefferson Lab \qquad T. Satogata / Fall 2011 \qquad MePAS Intro to Accel Physics \qquad 11$$

We can express this in terms of our lattice functions!

Jefferson Lab

Invariants and Ellipses

$$x(s) = A\sqrt{\beta(s)}\cos[\phi(s) + \phi_0]$$

We assumed A was constant, an invariant of the motion (A4)

A can be expressed in terms of initial coordinates to find

 $\mathcal{W} \equiv A^2 = \gamma_0 x_0^2 + 2\alpha_0 x_0 x_0' + \beta_0 x_0'^2$

This is known as the **Courant-Snyder invariant**: for all s, $W = \gamma(s)x(s)^2 + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2$

Similar to total energy of a simple harmonic oscillator \mathcal{W} looks like an elliptical area in (x, x') phase space

Our matrices look like scaled rotations (ellipses) in phase space

Emittance

The area of the ellipse inscribed by any given particle in phase space as it travels through our accelerator is called the **emittance** ϵ : it is constant (A4) and given by

 $\epsilon = \pi \mathcal{W} = \pi [\gamma(s)x(s)^2 + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2]$

Emittance is often quoted as the area of the ellipse that would contain a certain fraction of all (Gaussian) beam particles e.g. RMS emittance contains 39% of 2D beam particles Related to RMS beam size $\sigma_{\rm RMS}$ 0.2 $\sigma_{\rm RMS} = \sqrt{\epsilon \beta(s)}$ 0.1 x' [mrad] Yes, this RMS beam size depends on s! -0.1 -0.2 RMS emittance convention is fairly standard

for electron rings, with units of mm-mrad

14

Adiabatic Damping and Normalized Emittance

- But assumption (A4) is violated when we accelerate!
 - When we accelerate, invariant emittance is not invariant!
 - We are defining areas in (x, x') phase space
 - The definition of x doesn't change as we accelerate
 - But $x' \equiv dx/ds = p_x/p_0$ does since p_0 changes!
 - p_0 scales with relativistic beta, gamma: $p_0 \propto eta_r \gamma_r$
 - This has the effect of compressing x' phase space by $eta_r \gamma_r$

• Normalized emittance is the invariant in this case $\epsilon_N = \beta_r \gamma_r \epsilon$ unnormalized emittance goes down as we accelerate This is called **adiabatic damping**, important in, e.g., linacs

efferson Lab

Phase Space Ellipse Geography

 Now we can figure out some things from a phase space ellipse at a given s coordinate:

> $x_1 = \sqrt{\mathcal{W}/\gamma(s)}$ $x_2 = \sqrt{\mathcal{W}\beta(s)}$ $y_1 = \sqrt{\mathcal{W}/\beta(s)}$ $y_2 = \sqrt{\mathcal{W}\gamma(s)}$

> > T. Satogata / Fall 2011

Jefferson Lab

Rings and Tunes

- A synchrotron is by definition a periodic focusing system
 - It is very likely made up of many smaller periodic regions too
 - We can write down a periodic **one-turn matrix** as before

$$M = I \cos \Delta \phi_C + J \sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix}$$

- Recall that we defined **tune** as the total betatron phase advance in one revolution around a ring divided by 2π

$$Q_{x,y} = \frac{\Delta \phi_{x,y}}{\Delta \theta} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}(s)}$$

Horizontal Betatron Oscillation with tune: Q_h = 6.3, i.e., 6.3 oscillations per turn.

a)

efferson Lab

T. Satogata / Fall 2011

b)

Vertical Betatron Oscillation with tune: Q_v = 7.5, i.e., 7.5 oscillations per turn.

MePAS Intro to Accel Physics

Tunes

- There are horizontal and vertical tunes
 - turn by turn oscillation frequency
- Tunes are a direct indication of the amount of focusing in an accelerator
 - Higher tune implies tighter focusing, lower $\langle \beta_{x,y}(s) \rangle$
- Tunes are a critical parameter for accelerator performance
 - Linear stability depends greatly on phase advance
 - Resonant instabilities can occur when $nQ_x + mQ_y = k$
 - Often adjusted by changing groups of quadrupoles

$$M_{\text{one turn}} = I\cos(2\pi Q) + J\sin(2\pi Q)$$

efferson Lab

Chromaticity

- Just like bending depended on momentum (dispersion), focusing (and thus tunes) depend on momentum
 - The variation of tunes with δ is called **chromaticity**
 - Insert a momentum perturbation is like adding a small extra focusing to our one-turn matrix that depends on the unperturbed focusing K₀

$$M_{\text{one turn}}(\delta) = \begin{pmatrix} 1 & 0\\ K_0 \delta ds & 1 \end{pmatrix} \begin{pmatrix} \cos(2\pi Q) + \alpha \sin(2\pi Q) & \beta \sin(2\pi Q) \\ -\gamma \sin(2\pi Q) & \cos(2\pi Q) - \alpha \sin(2\pi Q) \end{pmatrix}$$
$$M_{\text{one turn}}(\delta) = \begin{pmatrix} \cos(2\pi Q) + \alpha \sin(2\pi Q) & \beta \sin(2\pi Q) \\ -\gamma \sin(2\pi Q) + K_0 \delta [\cos(2\pi Q) + \alpha \sin(2\pi Q)] ds & \cos(2\pi Q) - \alpha \sin(2\pi Q) + K_0 \delta \beta \sin(2\pi Q) ds \end{pmatrix}$$

 This looks painful, but remember the trace is related to the new tune

$$\cos(2\pi Q_{\text{new}}) = \frac{1}{2} \text{Tr} M = \cos(2\pi Q) + \frac{K_0 \delta}{2} \beta \sin(2\pi Q) ds$$

MePAS Intro to Accel Physics

19

Chromaticity Continued

$$\cos(2\pi Q_{\text{new}}) = \frac{1}{2} \text{Tr} \ M = \cos(2\pi Q) + \frac{K_0 \delta}{2} \beta \sin(2\pi Q) ds$$
$$\cos(2\pi Q_{\text{new}}) = \cos(2\pi (Q + dQ)) \approx \cos(2\pi Q) - 2\pi \sin(2\pi Q) dQ$$

These last two terms must be equal, which gives

$$dQ = -\frac{K(s)\delta}{4\pi}\beta(s)ds$$

Integrate around the ring to find the total tune change

$$\Delta Q = -\frac{\delta}{4\pi} \oint K(s)\beta(s) \, ds$$

Natural Chromaticity is defined as

$$\xi_N \equiv \left(\frac{\Delta Q}{Q}\right) / \left(\frac{\Delta p}{p_0}\right) = -\frac{1}{4\pi Q} \oint K(s)\beta(s) \, ds$$

The tune Q invariably has some spread from momentum spread

20

T. Satogata / Fall 2011

Homework

- Design a circular synchrotron made of 20 identical FODO cells, with bending dipoles in place of the drifts for 500 MeV electrons
 - What is the bend angle of each dipole?
 - For 1.5 T maximum dipole field, how long is each dipole?
 - How long is each FODO cell assuming the quads are thin quads?
 - Assume a reasonable FODO phase advance per cell
 - Treat the dipoles as drifts for the following analysis
 - Calculate

efferson Lab

- The minimum and maximum beta of each FODO cell
- The tunes Q_X and Q_Y
- The natural chromaticities ξ_X and ξ_Y (hint: the integral on p.20 becomes a sum for thin quadrupoles)

Dispersion Function $\eta(s)$

The generalized equation of motion of charge particles in magnets supplying bending and focusing effects is given by:

$$\begin{aligned} x'' + k_x(s)x &= \frac{\delta}{\rho(s)} & k_x(s) &= \frac{1}{\rho^2} + \frac{q}{p_0} \frac{\partial B_y}{\partial x}, \text{ and} \\ y'' + k_y(s)y &= 0, & k_y(s) &= -\frac{q}{p_0} \frac{\partial B_y}{\partial x}, \\ \delta &= \Delta p/p_0 \end{aligned}$$

Since the generalized solution of the homogeneous equation with $\delta = 0$ is given by

$$\vec{z}(s) = \mathbf{M}(s)\vec{z}_0$$
 $\mathbf{M}(s) = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix}$

$$\rightarrow$$
 $x(s) = C(s) x_0 + S(s) x'_0$

Then the generalized solution of the inhomogeneous equation with $\delta \neq 0$ can be written as $x(s) = C(s) x_0 + S(s) x'_0 + D(s) \delta_0$

$$\xrightarrow{} x'(s) = C'(s) x_0 + S'(s) x'_0 + D'(s) \delta_0$$

$$D(s) = S(s) \int_0^s \frac{C(\tau)}{\rho(\tau)} \, d\tau - C(s) \int_0^s \frac{S(\tau)}{\rho(\tau)} \, d\tau$$

cceler center

Here D(s) is a particular solution with $\delta_0 = 1$ (see Problem 5-8 in Conte's book).

Dispersion Function $\eta(s)$

From the initial conditions (x_0, x'_0) at s = 0:

 $x(s) = C(s) x_0 + S(s) x'_0 + D(s) \delta_0$ $x'(s) = C'(s) x_0 + S'(s) x'_0 + D'(s) \delta_0$

 $C(0)x_0 + S(0)x_0' + D(0)\delta_0 = x_0$ $C'(0)x_0 + S'(0)x_0' + D'(0)\delta_0 = x_0'$

$$C(0) = S'(0) = 1$$

$$C'(0) = S(0) = 0$$

$$D(0) = D'(0) = 0$$

Since no change in energy spread is assumed, trajectory equations can be written in matrix form for $\delta \neq 0$:

$\begin{pmatrix} x \\ x' \\ \delta \end{pmatrix}$) =	$\begin{pmatrix} C(s) \\ C'(s) \\ 0 \end{pmatrix}$	$S(s) \ S'(s) \ 0$	$\begin{pmatrix} D(s) \\ D'(s) \\ 1 \end{pmatrix}$	$\begin{pmatrix} x_0 \\ x'_0 \\ \delta_0 \end{pmatrix}$
(0)	/	(0	0	1 /	$\langle \delta_0 \rangle$

celerato

Here, the trajectory x(s) has two parts: a part due to betatron oscillation, $x_{g}(s)$ and the other part due to dispersion $\eta(s) = dx/d\delta$ or $x_{p}(s) = \eta(s)\delta$ $x(s) = x_{\beta}(s) + x_{p}(s)$ Jefferson Lab Yujong Kim @ Idaho State University and Thomas Jefferson National Accelerator Facility, USA T. Satogata / Fall 2011 MePAS Intro to Accel Physics 23

Dispersion Function $\eta(s)$

If we insert the trajectory due to the periodic dispersion $x_p(s) = \eta(s) \delta$ in the matrix form:

$$\begin{pmatrix} x\\x'\\\delta \end{pmatrix} = \begin{pmatrix} C(s) & S(s) & D(s)\\C'(s) & S'(s) & D'(s)\\0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0\\x'_0\\\delta_0 \end{pmatrix}$$

For a periodic cell, $x_0 = \eta(s_0)\delta_0 = \eta(s_0+L)\delta = \eta\delta$ (no energy spread change here).

If we solve equation above, we can find a periodic dispersion function $\eta(s)$ and $\eta'(s)$.

$$\eta(s) = \frac{[1 - S'(s)]D(s) + S(s)D'(s)}{2(1 - \cos \mu)}$$

$$\eta'(s) = \frac{[1 - C(s)]D'(s) + C'(s)D(s)}{2(1 - \cos \mu)}$$

$$\eta(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi Q_{\rm H})} \int_{s}^{s+L} \frac{\sqrt{\beta(\tau)}}{\rho(\tau)} \cos\left[\phi(\tau) - \phi(s) - \pi Q_{\rm H}\right] d\tau$$

(see Problem 5-8 in Conte's book & S. Y. Lee's book)

Yujong Kim @ Idaho State University and Thomas Jefferson National Accelerator Facility, USA

MePAS Intro to Accel Physics

24

here we used
$$\operatorname{tr}(\mathbf{M}) = C + S' = 2\cos\mu$$
 for $\mathbf{M}(s) = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix}$.

T. Satogata / Fall 2011

Jellerson Lad