Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Lecture 5/7: Dispersion (including FODO), Dispersion Suppressor, Light Source Lattices (DBA, TBA, TME)

Todd Satogata (Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2011-MePAS

Saturday, October 1, 2011

T. Satogata / Fall 2011

efferson Lab

MePAS Intro to Accel Physics

Review

Hill's equation x'' + K(s)x = 0quasi – periodic ansatz solution $x(s) = \sqrt{\epsilon\beta(s)}\cos[\phi(s) + \phi_0]$

$$\beta(s) = \beta(s+C) \quad \gamma(s) \equiv \frac{1+\alpha(s)^2}{\beta(s)}$$
$$\alpha(s) \equiv -\frac{1}{2}\beta'(s) \quad \phi(s) = \int \frac{ds}{\beta(s)}$$

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_0+C} = \begin{pmatrix} \cos \Delta \phi_C + \alpha(s) \sin \Delta \phi_C & \beta(s) \sin \Delta \phi_C \\ -\gamma(s) \sin \Delta \phi_C & \cos \Delta \phi_C - \alpha(s) \sin \Delta \phi_C \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

betatron phase advance
$$\Delta \phi_C = \int_{s_0}^{s_0+C} \frac{ds}{\beta(s)} \quad \text{Tr } M = 2\cos \Delta \phi_C$$
$$M = I\cos \Delta \phi_C + J\sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix}$$

Courant - Snyder invariant
$$\mathcal{W} \equiv A^2 = \gamma_0 x_0^2 + 2\alpha_0 x_0 x_0' + \beta_0 x_0'^2$$

fefferson Lab T. Satogata / Fall 2011 MePAS Intro to Accel Physics 2

Dispersion

- There is one more important lattice parameter to discuss
- **Dispersion** $\eta(s)$ is defined as the change in particle position with fractional momentum offset $\delta \equiv \Delta p/p_0$ Dispersion originates from momentum dependence of dipole bends
- Add explicit momentum dependence to equation of motion again

 $x(s) = C(s)x_0 + S(s)x'_0 + D(s)\delta_0$ $x'(s) = C'(s)x_0 + S'(s)x'_0 + D'(s)\delta_0$

efferson <u>Lab</u>

 $x'' + K(s)x = \frac{\delta}{\rho(s)} \quad \text{Particular solution of inhomogeneous}$ differential equation with periodic $\rho(s)$

 $\eta_x(s) \equiv$

$$D(s) = S(s) \int_0^s \frac{C(\tau)}{\rho(\tau)} d\tau - C(s) \int_0^s \frac{S(\tau)}{\rho(\tau)} d\tau$$

Use initial conditions etc to find

$$\begin{pmatrix} x(s) \\ x'(s) \\ \delta(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \\ \delta_0 \end{pmatrix}$$

The trajectory has two parts: $x(s) = \text{betatron} + \eta_x(s)\delta$ T. Satogata / Fall 2011

IVIEPAS ITILIO IO ACCEL PHYSICS

Dispersion Continued

• Substituting and noting dispersion is periodic, $\eta_x(s+C) = \eta_x(s)$

$$\begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \\ \delta(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \\ \delta_0 \end{pmatrix} \quad \text{achromat} : D = D' = 0$$

• If we take $\delta_0 = 1$ we can solve this in a clever way $\begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) \\ C'(s) & S'(S) \end{pmatrix} \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} + \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix} = M \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} + \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix}$ $(I - M) \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} = \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix} \Rightarrow \begin{bmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} = (I - M)^{-1} \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix}$

Solving gives

Jefferson Lab

$$\eta(s) = \frac{[1 - S'(s)]D(s) + S(s)D'(s)}{2(1 - \cos\Delta\phi)}$$
$$\eta'(s) = \frac{[1 - C(s)]D'(s) + C'(s)D(s)}{2(1 - \cos\Delta\phi)}$$

- A periodic lattice without dipoles has no intrinsic dispersion
- Consider FODO with long dipoles and thin quadrupoles
 - Each dipole has total length $\rho \theta_C/2$ so each cell is of length $L = \rho \theta_C$
 - Assume a large accelerator with many FODO cells so $\theta_C \ll 1$

$$M_{-2f} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad M_{dipole} = \begin{pmatrix} 1 & \frac{L}{2} & \frac{L\theta_C}{8} \\ 0 & 1 & \frac{\theta_C}{2} \\ 0 & 0 & 1 \end{pmatrix} \qquad M_f = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$M_{FODO} = M_{-2f} M_{dipole} M_f M_{dipole} M_{-2f}$$
$$M_{FODO} = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & L\left(1 + \frac{L}{4f}\right) & \frac{L}{2}\left(1 + \frac{L}{8f}\right)\theta_C \\ -\frac{L}{4f^2}\left(1 - \frac{L}{4f}\right) & 1 - \frac{L^2}{8f^2} & \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2}\right)\theta_C \\ 0 & 0 & 1 \end{pmatrix}$$

Isometry to be a set of the set of the

FODO Cell Dispersion

- Like $\hat{\beta}$ before, this choice of periodicity gives us $\hat{\eta}_x$

$$\hat{\eta}_x = \frac{L\theta_C}{4} \left[\frac{1 + \frac{1}{2}\sin\frac{\Delta\phi}{2}}{\sin^2\frac{\Delta\phi}{2}} \right] \qquad \eta'_x = 0 \text{ at max}$$

- Changing periodicity to defocusing quad centers gives $\check{\eta}_x$

6

Dispersion Suppressor

- The FODO dispersion solution is non-zero everywhere
 - But in straight sections we often want $\eta_x = \eta'_x = 0$
 - e.g. to keep beam small in wigglers/undulators in light source
 - We can "match" between these two conditions with with a **dispersion suppressor**, a **non-periodic** set of magnets that transforms FODO (η_x, η'_x) to zero.

- Consider two FODO cells with different total bend angles θ_1, θ_2
 - Same quadrupole focusing to not disturb $eta_x, \Delta \phi_x$ much
 - We want this to match $(\eta_x,\eta_x')=(\hat{\eta}_x,0)$ to $(\eta_x,\eta_x')=(0,0)$
 - $\alpha_x = 0$ at ends to simplify periodic matrix

efferson Lab

8

(FODO Dispersion Suppressor) $\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} \cos 2\Delta\phi_x & \beta_x \sin 2\Delta\phi_x & D(s)\\ -\frac{\sin 2\Delta\phi_x}{\beta_x} & \cos 2\Delta\phi_x & D'(s)\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{\eta}_x\\0\\1 \end{pmatrix}$ $D(s) = \frac{L}{2} \left(1 + \frac{L}{8f} \right) \left[\left(3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right]$ multiply matrices \Rightarrow $D'(s) = \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2}\right) \left[\left(1 - \frac{L^2}{4f^2}\right)\theta_1 + \theta_2\right]$ $\hat{\eta}_x = \frac{4f^2}{L} \left(1 + \frac{L}{8f}\right) \left(\theta_1 + \theta_2\right)$ $\theta_1 = \left(1 - \frac{1}{4\sin^2 \frac{\Delta \phi_x}{2}}\right)\theta \qquad \theta_2 = \left(\frac{1}{4\sin^2 \frac{\Delta \phi_x}{2}}\right)\theta$ two cells, one FODO bend angle \rightarrow reduced bending $\theta = \theta_1 + \theta_2$

9

Jefferson Lab

Homework

- For this dispersion suppressor, is it possible to make θ_1 or θ_2 equal to zero?
 - If so, what condition must be applied to the FODO cell?
 - What does the magnet layout of the resulting dispersion suppressor look like?
- Sketch $\eta_x(s)$ through the dispersion suppressor
- Describe how to make an achromatic section out of two dispersion suppressors of this type

efferson Lab

10

Light Source Beam Size and Optics

- Small emittance electron beam desirable for high brightness synchrotron radiation
 - Emittance in a synchrotron light source is balance between
 - quantum excitation due to synchrotron light photon emission
 - adiabatic damping from energy-restoring RF electric field
 - Natural equilibrium emittance is (see Wolski):

MePAS Intro to Accel Physics 11

Quantum excitation — Longitudinal - beam energy spread The radiation is emitted in quanta $\epsilon = \hbar \omega$ and excites energy oscillation which are damped giving a Gaussian distribution with variance σ_E^2 .

FODO Cell Equilibrium Emittance

- Wolski uses almost everything we have developed so far to find I_5/I_2 in periodic lattice cells, such as a FODO cell
 - For small cell bend angle and equal strength quadrupoles

$$\frac{I_5}{I_2} \approx \left(1 - \frac{L^2}{16f^2}\right) \left(1 + \frac{\rho^2}{4f^2}\right)^{-\frac{3}{2}}$$

$$\rho \gg 2f \quad \Rightarrow \quad \frac{I_5}{I_2} \approx \left(1 - \frac{L^2}{16f^2}\right) \frac{8f^3}{\rho^3}$$

$$4f \gg L \quad \Rightarrow \quad \frac{I_5}{I_2} \approx \frac{8f^3}{\rho^3}$$

$$\epsilon_0 \approx C_q \gamma_r^2 \left(\frac{2f}{L}\right)^3 \theta^3$$

FODO cell equilibrium emittance

13

Jefferson Lab

FODO Cell Equilibrium Emittance

$$\epsilon_0 \approx C_q \gamma_r^2 \left(\frac{2f}{L}\right)^3 \theta^3$$

FODO cell equilibrium emittance

- Some observations: equilibrium emittance is...
 - proportional to square of beam energy
 - proportional to cube of FODO cell bending angle
 - increasing number of FODO cells in ring reduces emittance
 - proportional to cube of the quadrupole focal length
 - lower f, stronger quadrupoles means lower emittance
 - inversely proportional to cube of cell (or dipole) length
 - Ionger FODO cells produce lower equilibrium emittance
 - sensible: reduces required dipole field, quantum excitation
 - in conflict with desire to increase number of FODO cells
 - minimum is when $\Delta\phi\approx 137^\circ$

efferson Lab

We now follow Wolski's presentation...

