Introduction to Accelerator Physics Old Dominion University

Linear Accelerator Lattice Optics

Todd Satogata Geoff Krafft (Jefferson Lab) still email satogata@jlab.org http://www.toddsatogata.net/2011-ODU

Tuesday, October 3 2011

1

T. Satogata / Fall 2011

Jefferson Lab

Matrix Example: Strong Focusing

Consider a doublet of thin quadrupoles separated by drift L

There is **net focusing** given by this **alternating gradient** system A fundamental point of optics, and of accelerator **strong focusing**

Jefferson Lab

Strong Focusing: Another View

$$M_{\text{doublet}} = \begin{pmatrix} 1 & 0\\ \frac{1}{f_D} & 1 \end{pmatrix} \begin{pmatrix} 1 & L\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ -\frac{1}{f_F} & 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{L}{f_F} & L\\ \frac{1}{f_D} - \frac{1}{f_F} - \frac{L}{f_F f_D} & 1 + \frac{L}{f_D} \end{pmatrix}$$

incoming paraxial ray
$$\begin{pmatrix} x \\ x' \end{pmatrix} = M_{\text{doublet}} \begin{pmatrix} x_0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 - \frac{L}{f_F} \\ \frac{1}{f_D} - \frac{1}{f_F} - \frac{L}{f_F f_D} \end{pmatrix} x_0$$

For this to be focusing, x' must have opposite sign of x where these are coordinates of transformation of incoming paraxial ray

$$f_F = f_D \quad x' < 0 \quad \mathbf{BUT} \quad x > 0 \text{ iff } f_F > L$$

Equal strength doublet is net focusing under condition that each lens's focal length is greater than distance between them

Jefferson Lab

More Math: Hill's Equation

- Let's go back to our quadrupole equations of motion for $R \to \infty$

$$x'' + Kx = 0$$
 $y'' - Ky = 0$ $K \equiv \frac{1}{(B\rho)} \left(\frac{\partial B_y}{\partial x}\right)$

What happens when we let the focusing K vary with s? Also assume K is **periodic** in s with some periodicity C

$$x'' + K(s)x = 0$$
 $K(s) \equiv \frac{1}{(B\rho)} \left(\frac{\partial B_y}{\partial x}\right)(s)$ $K(s+C) = K(s)$

This periodicity can be one revolution around the accelerator or as small as one repeated "cell" of the layout (Such as a FODO cell in the previous slide)

The simple harmonic oscillator equation with a **periodically** varying spring constant K(s) is known as **Hill's Equation**

T. Satogata / Fall 2011

Jefferson Lab

Hill's Equation Solution Ansatz
$$x'' + K(s)x = 0$$
 $K \equiv \frac{1}{(B\rho)} \left(\frac{\partial B_y}{\partial x}\right) (s)$

Solution is a quasi-periodic harmonic oscillator

5

lefferson Lab

$$x(s) = A w(s) \cos[\phi(s) + \phi_0]$$

where w(s) is periodic in C but the phase ϕ is not!! Substitute this educated guess ("ansatz") to find

$$x' = Aw' \cos[\phi + \phi_0] - Aw\phi' \sin[\phi + \phi_0]$$
$$x'' = A(w'' - w\phi'^2) \cos[\phi + \phi_0] - A(2w'\phi' + w\phi'') \sin[\phi + \phi_0]$$
$$x'' + K(s)x = -A(2w'\phi' + w\phi'') \sin(\phi + \phi_0) + A(w'' - w\phi'^2 + Kw) \cos(\phi + \phi_0) = 0$$

For w(s) and $\phi(s)$ to be independent of $\phi_0,$ coefficients of sin and cos terms must vanish identically

Courant-Snyder Parameters

$$2ww'\phi' + w^2\phi'' = (w^2\phi')' = 0 \quad \Rightarrow \quad \phi' = \frac{k}{w(s)^2}$$

 $w'' - (k^2/w^3) + Kw = 0 \implies w^3(w'' + Kw) = k^2$

 Notice that in both equations $w^2 \propto k$ so we can scale this out and define a new set of functions, Courant-Snyder Parameters or Twiss Parameters

Jefferson Lab

Towards The Matrix Solution

What is the matrix for this Hill's Equation solution?

$$x(s) = A\sqrt{\beta(s)}\cos\phi(s) + B\sqrt{\beta(s)}\sin\phi(s)$$

Take a derivative with respect to s to get $x' \equiv \frac{dx}{ds}$

$$\phi' = \frac{1}{\beta(s)} \quad x'(s) = \frac{1}{\sqrt{\beta(s)}} \left\{ \left[B - \alpha(s)A \right] \cos \phi(s) - \left[A + \alpha(s)B \right] \sin \phi(s) \right\}$$

Now we can solve for A and B in terms of initial conditions (x(0), x'(0)) $x_0 \equiv x(0) = A\sqrt{\beta(0)}$ $x'_0 \equiv x'(0) = \frac{1}{\sqrt{\beta(0)}} [B - \alpha(0)A]$ $A = \frac{x_0}{\sqrt{\beta(0)}}$ $B = \frac{1}{\sqrt{\beta(0)}} [\beta(0)x'_0 + \alpha(0)x_0]$

And take advantage of the periodicity of β , α to find x(C), x'(C)

T. Satogata / Fall 2011

efferson Lab

Hill's Equation Matrix Solution

$$\begin{aligned} x(s) &= A\sqrt{\beta(s)}\cos\phi(s) + B\sqrt{\beta(s)}\sin\phi(s) \\ x'(s) &= \frac{1}{\sqrt{\beta(s)}} \left\{ \left[B - \alpha(s)A \right]\cos\phi(s) - \left[A + \alpha(s)B \right]\sin\phi(s) \right\} \\ A &= \frac{x_0}{\sqrt{\beta(0)}} \quad B = \frac{1}{\sqrt{\beta(0)}} \left[\beta(0)x'_0 + \alpha(0)x_0 \right] \end{aligned}$$

$$x(C) = [\cos \phi(C) + \alpha(0) \sin \phi(C)] x_0 + \beta(0) \sin \phi(C) x'_0$$

$$x'(C) = -\gamma(0) \sin \phi(C) x_0 + [\cos \phi(C) - \alpha(0) \sin \phi(C)] x'_0$$

We can write this down in a matrix form where $\Delta\phi_C$ is the betatron phase advance through one period C

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s+C} = \begin{pmatrix} \cos \Delta \phi_C + \alpha(0) \sin \Delta \phi_C & \beta(0) \sin \Delta \phi_C \\ -\gamma(0) \sin \Delta \phi_C & \cos \Delta \phi_C - \alpha(0) \sin \Delta \phi_C \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

$$\Delta \phi_C = \int_{s_0}^{s_0+C} \frac{ds}{\beta(s)}$$
Jefferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics 8

Interesting Observations

- $\Delta \phi_C$ is independent of s: this is the **betatron phase** advance of this periodic system
- Determinant of matrix M is still 1!
- Looks like a rotation and some scaling
- M can be written down in a beautiful and deep way

$$M = I \cos \Delta \phi_C + J \sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(0) & \beta(0) \\ -\gamma(0) & -\alpha(0) \end{pmatrix}$$

$$J^2 = -I \quad \Rightarrow \quad M = e^{J(s)\Delta\phi_C}$$

and remember $x(s) = A\sqrt{\beta(s)} \cos[\phi(s) + \phi_0]$

Jefferson Lab

Convenient Calculations

 If we know the transport matrix, we can find the lattice parameters

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s+C} = \begin{pmatrix} \cos \Delta \phi_C + \alpha(0) \sin \Delta \phi_C & \beta(0) \sin \Delta \phi_C \\ -\gamma(0) \sin \Delta \phi_C & \cos \Delta \phi_C - \alpha(0) \sin \Delta \phi_C \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

betatron phase advance per cell $\Delta \phi_C = \frac{1}{2} \text{Tr } M$
 $\beta(0) = \frac{m_{12}}{\sin \Delta \phi_C}$
 $\alpha(0) = \frac{m_{11} - \cos \Delta \phi_C}{\sin \Delta \phi_C}$
 $\gamma(0) \equiv \frac{1 + \alpha^2(0)}{\beta(0)}$

10

Jefferson Lab

General Non-Periodic Transport Matrix

 We can parameterize a general non-periodic transport matrix from s₁ to s₂ using the lattice parameters

$$M(s_2) = \begin{pmatrix} \sqrt{\frac{\beta(s_2)}{\beta(s_1)}} [\cos \Delta \phi + \alpha(s_1) \sin \Delta \phi] & \sqrt{\beta(s_1)\beta(s_2)} \sin \Delta \phi \\ -\frac{[\alpha(s_2) - \alpha(s_1)] \cos \Delta \phi + [1 + \alpha(s_1)\alpha(s_2)] \sin \Delta \phi}{\sqrt{\beta(s_1)\beta(s_2)}} & \sqrt{\frac{\beta(s_1)}{\beta(s_2)}} [\cos \Delta \phi - \alpha(s_2) \sin \Delta \phi] \end{pmatrix}$$

• This does not have a pretty form like the periodic matrix However both can be expressed as $M = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix}$

where the C and S terms are cosine-like and sine-like; the second row is the s-derivative of the first row!

The most common use of this matrix is the m_{12} term:

$$\Delta x(s_2) = \sqrt{\beta(s_1)\beta(s_2)} \sin(\Delta \phi) x'(s_1)$$

Effect of angle kick on downstream position

11

efferson Lab

(Deriving the Non-Periodic Transport Matrix)

 $x(s) = Aw(s)\cos\phi(s) + Bw(s)\sin\phi(s)$

$$x'(s) = A\left(w'(s)\cos\phi(s) - \frac{\sin\phi(s)}{w(s)}\right) + B\left(w'(s)\sin\phi(s) + \frac{\cos\phi(s)}{w(s)}\right)$$

Calculate A, B in terms of initial conditions (x_0, x'_0) and (w_0, ϕ_0)

$$A = \left(w_0' \sin \phi_0 + \frac{\cos \phi_0}{w_0}\right) x_0 - (w_0 \sin \phi_0) x_0'$$
$$B = -\left(w_0' \cos \phi_0 - \frac{\sin \phi_0}{w_0}\right) x_0 + (w_0 \cos \phi_0) x_0'$$
$$(x(s)) \qquad (m_1)$$

Substitute (A,B) and put into matrix form: $\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$

$$m_{11}(s) = \frac{w(s)}{w_0} \cos \Delta \phi - w(s)w'_0 \sin \Delta \phi \qquad \qquad \Delta \phi \equiv \phi(s) - \phi_0$$
$$w(s) = \sqrt{\beta(s)}$$

$$m_{12}(s) = w(s)w_0 \sin \Delta\phi$$

Jefferson Lab

$$m_{21}(s) = -\frac{1 + w(s)w_0w'(s)w'_0}{w(s)w_0}\sin\Delta\phi - \left[\frac{w'_0}{w(s)} - \frac{w'(s)}{w_0}\right]\cos\Delta\phi$$

$$m_{22}(s) = \frac{w_0}{w(s)} \cos \Delta \phi + w_0 w' \sin \Delta \phi$$

Review

Hill's equation x'' + K(s)x = 0quasi – periodic ansatz solution $x(s) = A\sqrt{\beta(s)}\cos[\phi(s) + \phi_0]$ $\beta(s) = \beta(s+C) \quad \gamma(s) \equiv \frac{1+\alpha(s)^2}{\beta(s)}$ $\alpha(s) \equiv -\frac{1}{2}\beta'(s) \quad \phi(s) = \int \frac{ds}{\beta(s)}$ $\begin{pmatrix} x \\ x' \end{pmatrix}_{s+C} = \begin{pmatrix} \cos \Delta \phi_C + \alpha(0) \sin \Delta \phi_C & \beta(0) \sin \Delta \phi_C \\ -\gamma(0) \sin \Delta \phi_C & \cos \Delta \phi_C - \alpha(0) \sin \Delta \phi_C \end{pmatrix}$ $\Delta \phi_C = \int^{s_0 + C} \frac{ds}{\beta(s)} \qquad \text{Tr } M = 2\cos \Delta \phi_C$ betatron phase advance $M = I \cos \Delta \phi_C + J \sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(0) & \beta(0) \\ -\gamma(0) & -\alpha(0) \end{pmatrix}$ $J^2 = -I \quad \Rightarrow \quad M = e^{J(s)\Delta\phi_C}$ Jefferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics 13

Transport Matrix Stability Criteria

- For long systems (rings) we want $M^n \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$ stable as $n \to \infty$
 - If 2x2 M has eigenvectors (V_1, V_2) and eigenvalues (λ_1, λ_2) :

$$M^n \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} = A\lambda_1^n V_1 + B\lambda_2^n V_2$$

- M is also unimodular (det M=1) so $\lambda_{1,2} = e^{\pm i\phi}$ with complex ϕ
- For $\lambda_{1,2}^n$ to remain bounded, ϕ must be real
- We can always transform M into diagonal form with the eigenvalues on the diagonal (since det M=1); this does not change the trace of the matrix

$$e^{i\phi} + e^{-i\phi} = 2\cos\phi = \operatorname{Tr} M$$

• The **stability requirement** for these types of matrices is then

 ϕ real =

$$-1 \le \frac{1}{2} \operatorname{Tr} M \le 1$$

efferson Lab

- Select periodicity between centers of focusing quads
 - A natural periodicity if we want to calculate maximum β(s)

$$M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{L}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{L}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix}$$
$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & \frac{L^2}{4f} + L \\ \frac{L^2}{16f^3} - \frac{L}{4f^2} & 1 - \frac{L^2}{8f^2} \end{pmatrix} \quad \text{Tr } M = 2\cos\Delta\phi_C = 2 - \frac{L^2}{4f^2}$$

$$1 - \frac{L^2}{8f^2} = \cos\Delta\phi_C = 1 - 2\sin^2\frac{\Delta\phi_C}{2} \quad \Rightarrow \quad \sin\frac{\Delta\phi_C}{2} = \pm\frac{L}{4f}$$

• $\Delta \phi_C$ only has real solutions (stability) if $\frac{L}{A} < f$

T. Satogata / Fall 2011

Jefferson Lab

• What is $\hat{\beta}$?

Jefferson Lab

• A natural periodicity if we want to calculate maximum $\beta(s)$

$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & \frac{L^2}{4f} + L \\ \frac{L^2}{16f^3} - \frac{L}{4f^2} & 1 - \frac{L^2}{8f^2} \end{pmatrix} \Leftrightarrow M_{12} = \beta \sin \Delta \phi_C$$
$$\hat{\beta} \sin \Delta \phi_C = \frac{L^2}{4f} + L = L \left(1 + \sin \frac{\Delta \phi_C}{2} \right) \qquad \hat{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 + \sin \frac{\Delta \phi_C}{2} \right)$$

 Follow a similar strategy reversing F/D quadrupoles to find the minimum β(s) within a FODO cell (center of D quad)

$$\check{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 - \sin \frac{\Delta \phi_C}{2} \right)$$

- This is a picture of a FODO lattice, showing contours of $\pm \sqrt{\beta(s)}$ since the particle motion goes like $x(s) = A\sqrt{\beta(s)} \cos[\phi(s) + \phi_0]$
 - This also shows a particle oscillating through the lattice
 - Note that √β(s) provides an "envelope" for particle oscillations
 √β(s) is sometimes called the envelope function for the lattice
 - Min beta is at defocusing quads, max beta is at focusing quads
 - 6.5 periodic FODO cells per betatron oscillation

 $\Rightarrow \Delta \phi_C = 360^{\circ}/6.5 \approx 55^{\circ}$

efferson Lab

- 1/6 of one of two RHIC synchrotron rings, injection lattice
 - FODO cell length is about L=30m
 - Phase advance per FODO cell is about $\Delta \phi_C = 77^\circ = 1.344$ rad

$$\hat{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 + \sin \frac{\Delta \phi_C}{2} \right) \approx 53 \text{ m}$$
$$\check{\beta} = \frac{L}{\sin \Delta \phi_C} \left(1 - \sin \frac{\Delta \phi_C}{2} \right) \approx 8.7 \text{ m}$$

T. Satogata / Fall 2011

Jefferson Lab

Propagating Lattice Parameters

• If I have $(\beta, \alpha, \gamma)(s_1)$ and I have the transport matrix $M(s_1, s_2)$ that transports particles from $s_1 \rightarrow s_2$, how do I find the new lattice parameters $(\beta, \alpha, \gamma)(s_2)$?

 $M(s_1, s_1 + C) = I \cos \mu + J \sin \mu = \begin{pmatrix} \cos \mu + \alpha(s_1) \sin \mu & \beta(s_1) \sin \mu \\ -\gamma(s_1) \sin \mu & \cos \mu - \alpha(s_1) \sin \mu \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$

The J(s) matrices at s_1 , s_2 are related by

$$J(s_2) = M(s_1, s_2)J(s_1)M^{-1}(s_1, s_2)$$

Then expand, using det M=1

$$J(s_{2}) = \begin{pmatrix} \alpha(s_{2}) & \beta(s_{2}) \\ -\gamma(s_{2}) & -\alpha(s_{2}) \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} \alpha(s_{1}) & \beta(s_{1}) \\ -\gamma(s_{1}) & -\alpha(s_{1}) \end{pmatrix} \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$
$$\begin{pmatrix} \beta(s_{2}) \\ \alpha(s_{2}) \\ \gamma(s_{2}) \end{pmatrix} = \begin{pmatrix} m_{11}^{2} & -2m_{11}m_{12} & m_{12}^{2} \\ -m_{11}m_{21} & m_{11}m_{22} + m_{12}m_{21} & -m_{12}m_{22} \\ m_{21}^{2} & -2m_{21}m_{22} & m_{22}^{2} \end{pmatrix} \begin{pmatrix} \beta(s_{1}) \\ \alpha(s_{1}) \\ \gamma(s_{1}) \end{pmatrix}$$
$$Iefferson Lab \qquad T. Satogata / Fall 2011 \qquad ODU Intro to Accel Physics \qquad 20$$

 Area of an ellipse that envelops a given percentage of the beam particles in phase space is related to the emittance

We can express this in terms of our lattice functions!

T. Satogata / Fall 2011

Jefferson Lab

ODU Intro to Accel Physics

Invariants and Ellipses

$$x(s) = A\sqrt{\beta(s)}\cos[\phi(s) + \phi_0]$$

We assumed A was constant, an invariant of the motion (A4)

A can be expressed in terms of initial coordinates to find

$$\mathcal{W} \equiv A^2 = \gamma_0 x_0^2 + 2\alpha_0 x_0 x_0' + \beta_0 x_0'^2$$

This is known as the **Courant-Snyder invariant**: for all s, $\mathcal{W} = \gamma(s)x(s)^2 + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2$

Similar to total energy of a simple harmonic oscillator \mathcal{W} looks like an elliptical area in (x, x') phase space

Our matrices look like scaled rotations (ellipses) in phase space

Emittance

The area of the ellipse inscribed by any given particle in phase space as it travels through our accelerator is called the emittance ext{e}: it is constant (A4) and given by

 $\epsilon = \pi \mathcal{W} = \pi [\gamma(s)x(s)^2 + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2]$

Emittance is often quoted as the area of the ellipse that would contain a certain fraction of all (Gaussian) beam particles e.g. RMS emittance contains 39% of 2D beam particles Related to RMS beam size $\sigma_{RMS} = \sqrt{\epsilon\beta(s)}$

Yes, this RMS beam size depends on s!

RMS emittance convention is fairly standard for electron rings, with units of mm-mrad

23

efferson Lab

Adiabatic Damping and Normalized Emittance

- But assumption (A4) is violated when we accelerate!
 - When we accelerate, invariant emittance is not invariant!
 - We are defining areas in (x, x') phase space
 - The definition of x doesn't change as we accelerate
 - But $x' \equiv dx/ds = p_x/p_0$ does since p_0 changes!
 - p_0 scales with relativistic beta, gamma: $p_0 \propto eta_r \gamma_r$
 - This has the effect of compressing x' phase space by $eta_r \gamma_r$

• Normalized emittance is the invariant in this case $\epsilon_N = \beta_r \gamma_r \epsilon$ unnormalized emittance goes down as we accelerate This is called **adiabatic damping**, important in, e.g., linacs

efferson Lab

Phase Space Ellipse Geography

 Now we can figure out some things from a phase space ellipse at a given s coordinate:

> $x_1 = \sqrt{\mathcal{W}/\gamma(s)}$ $x_2 = \sqrt{\mathcal{W}\beta(s)}$ $y_1 = \sqrt{\mathcal{W}/\beta(s)}$ $y_2 = \sqrt{\mathcal{W}\gamma(s)}$

> > T. Satogata / Fall 2011

Jefferson Lab

ODU Intro to Accel Physics

Rings and Tunes

- A synchrotron is by definition a periodic focusing system
 - It is very likely made up of many smaller periodic regions too
 - We can write down a periodic **one-turn matrix** as before

$$M = I \cos \Delta \phi_C + J \sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix}$$

- Recall that we defined **tune** as the total betatron phase advance in one revolution around a ring divided by 2π

$$Q_{x,y} = \frac{\Delta \phi_{x,y}}{\Delta \theta} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}(s)}$$

b)

Horizontal Betatron Oscillation with tune: $Q_h = 6.3$, i.e., 6.3 oscillations per turn.

a)

lefferson Lab

T. Satogata / Fall 2011

Vertical Betatron Oscillation with tune: $Q_V = 7.5$, i.e., 7.5 oscillations per turn.

ODU Intro to Accel Physics

Tunes

- There are horizontal and vertical tunes
 - turn by turn oscillation frequency
- Tunes are a direct indication of the amount of focusing in an accelerator
 - Higher tune implies tighter focusing, lower $\langle \beta_{x,y}(s) \rangle$
- Tunes are a critical parameter for accelerator performance
 - Linear stability depends greatly on phase advance
 - Resonant instabilities can occur when $nQ_x + mQ_y = k$
 - Often adjusted by changing groups of quadrupoles

$$M_{\text{one turn}} = I\cos(2\pi Q) + J\sin(2\pi Q)$$

efferson Lab

Chromaticity

- Just like bending depended on momentum (dispersion), focusing (and thus tunes) depend on momentum
 - The variation of tunes with δ is called **chromaticity**
 - Insert a momentum perturbation is like adding a small extra focusing to our one-turn matrix that depends on the unperturbed focusing K₀

$$M_{\text{one turn}}(\delta) = \begin{pmatrix} 1 & 0\\ K_0 \delta ds & 1 \end{pmatrix} \begin{pmatrix} \cos(2\pi Q) + \alpha \sin(2\pi Q) & \beta \sin(2\pi Q) \\ -\gamma \sin(2\pi Q) & \cos(2\pi Q) - \alpha \sin(2\pi Q) \end{pmatrix}$$
$$M_{\text{one turn}}(\delta) = \begin{pmatrix} \cos(2\pi Q) + \alpha \sin(2\pi Q) & \beta \sin(2\pi Q) \\ -\gamma \sin(2\pi Q) + K_0 \delta [\cos(2\pi Q) + \alpha \sin(2\pi Q)] ds & \cos(2\pi Q) - \alpha \sin(2\pi Q) + K_0 \delta \beta \sin(2\pi Q) ds \end{pmatrix}$$

 This looks painful, but remember the trace is related to the new tune

$$\cos(2\pi Q_{\text{new}}) = \frac{1}{2} \text{Tr} M = \cos(2\pi Q) + \frac{K_0 \delta}{2} \beta \sin(2\pi Q) ds$$

T. Satogata / Fall 2011

lefferson Lab

Chromaticity Continued

$$\cos(2\pi Q_{\text{new}}) = \frac{1}{2} \text{Tr} \ M = \cos(2\pi Q) + \frac{K_0 \delta}{2} \beta \sin(2\pi Q) ds$$
$$\cos(2\pi Q_{\text{new}}) = \cos(2\pi (Q + dQ)) \approx \cos(2\pi Q) - 2\pi \sin(2\pi Q) dQ$$

These last two terms must be equal, which gives

$$dQ = -\frac{K(s)\delta}{4\pi}\beta(s)ds$$

Integrate around the ring to find the total tune change

$$\Delta Q = -\frac{\delta}{4\pi} \oint K(s)\beta(s) \, ds$$

Natural Chromaticity is defined as

$$\xi_N \equiv \left(\frac{\Delta Q}{Q}\right) / \left(\frac{\Delta p}{p_0}\right) = -\frac{1}{4\pi Q} \oint K(s)\beta(s) \, ds$$

The tune Q invariably has some spread from momentum spread

29

Jefferson Lab

Review

Hill's equation x'' + K(s)x = 0quasi – periodic ansatz solution $x(s) = \sqrt{\epsilon\beta(s)}\cos[\phi(s) + \phi_0]$

$$\beta(s) = \beta(s+C) \quad \gamma(s) \equiv \frac{1+\alpha(s)^2}{\beta(s)}$$
$$\alpha(s) \equiv -\frac{1}{2}\beta'(s) \quad \phi(s) = \int \frac{ds}{\beta(s)}$$

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_0+C} = \begin{pmatrix} \cos \Delta \phi_C + \alpha(s) \sin \Delta \phi_C & \beta(s) \sin \Delta \phi_C \\ -\gamma(s) \sin \Delta \phi_C & \cos \Delta \phi_C - \alpha(s) \sin \Delta \phi_C \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

betatron phase advance
$$\Delta \phi_C = \int_{s_0}^{s_0+C} \frac{ds}{\beta(s)} \quad \text{Tr } M = 2\cos \Delta \phi_C$$
$$M = I\cos \Delta \phi_C + J\sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix}$$

Courant - Snyder invariant
$$\mathcal{W} \equiv A^2 = \gamma_0 x_0^2 + 2\alpha_0 x_0 x_0' + \beta_0 x_0'^2$$

Ifferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics 30

Dispersion

- There is one more important lattice parameter to discuss
- **Dispersion** $\eta(s)$ is defined as the change in particle position with fractional momentum offset $\delta \equiv \Delta p/p_0$ Dispersion originates from momentum dependence of dipole bends
- Add explicit momentum dependence to equation of motion again

 $x(s) = C(s)x_0 + S(s)x'_0 + D(s)\delta_0$ $x'(s) = C'(s)x_0 + S'(s)x'_0 + D'(s)\delta_0$

 $x'' + K(s)x = \frac{\delta}{\rho(s)} \quad \text{Particular solution of inhomogeneous}$ differential equation with periodic $\rho(s)$

$$D(s) = S(s) \int_0^s \frac{C(\tau)}{\rho(\tau)} d\tau - C(s) \int_0^s \frac{S(\tau)}{\rho(\tau)} d\tau$$

Use initial conditions etc to find

$$\begin{pmatrix} x(s) \\ x'(s) \\ \delta(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \\ \delta_0 \end{pmatrix}$$

The trajectory has two parts: $x(s) = \text{betatron} + \eta_x(s)\delta$ efferson <u>Lab</u> T. Satogata / Fall 2011

ODU IIIIIO IO ACCEI PITYSICS

$$\eta_x(s) \equiv \frac{dx}{d\delta}$$

Dispersion Continued

• Substituting and noting dispersion is periodic, $\eta_x(s+C) = \eta_x(s)$

$$\begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \\ \delta(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \\ \delta_0 \end{pmatrix} \quad \text{achromat} : D = D' = 0$$

• If we take $\delta_0 = 1$ we can solve this in a clever way $\begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) \\ C'(s) & S'(S) \end{pmatrix} \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} + \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix} = M \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} + \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix}$ $(I - M) \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} = \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix} \Rightarrow \begin{bmatrix} \eta_x(s) \\ \eta'_x(s) \end{pmatrix} = (I - M)^{-1} \begin{pmatrix} D(s) \\ D'(s) \end{pmatrix}$

Solving gives

Jefferson Lab

$$\eta(s) = \frac{[1 - S'(s)]D(s) + S(s)D'(s)}{2(1 - \cos\Delta\phi)}$$
$$\eta'(s) = \frac{[1 - C(s)]D'(s) + C'(s)D(s)}{2(1 - \cos\Delta\phi)}$$

- A periodic lattice without dipoles has no intrinsic dispersion
- Consider FODO with long dipoles and thin quadrupoles
 - Each dipole has total length $\rho \theta_C/2$ so each cell is of length $L = \rho \theta_C$
 - Assume a large accelerator with many FODO cells so $\theta_C \ll 1$

$$M_{-2f} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad M_{dipole} = \begin{pmatrix} 1 & \frac{L}{2} & \frac{L\theta_C}{8} \\ 0 & 1 & \frac{\theta_C}{2} \\ 0 & 0 & 1 \end{pmatrix} \qquad M_f = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$M_{FODO} = M_{-2f} M_{dipole} M_f M_{dipole} M_{-2f}$$
$$M_{FODO} = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & L\left(1 + \frac{L}{4f}\right) & \frac{L}{2}\left(1 + \frac{L}{8f}\right)\theta_C \\ -\frac{L}{4f^2}\left(1 - \frac{L}{4f}\right) & 1 - \frac{L^2}{8f^2} & \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2}\right)\theta_C \\ 0 & 0 & 1 \end{pmatrix}$$

(ferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics 33

FODO Cell Dispersion

- Like $\hat{\beta}$ before, this choice of periodicity gives us $\hat{\eta}_x$

$$\hat{\eta}_x = \frac{L\theta_C}{4} \left[\frac{1 + \frac{1}{2}\sin\frac{\Delta\phi}{2}}{\sin^2\frac{\Delta\phi}{2}} \right] \qquad \eta'_x = 0 \text{ at max}$$

- Changing periodicity to defocusing quad centers gives $\check{\eta}_x$

Dispersion Suppressor

- The FODO dispersion solution is non-zero everywhere
 - But in straight sections we often want $\eta_x = \eta'_x = 0$
 - e.g. to keep beam small in wigglers/undulators in light source
 - We can "match" between these two conditions with with a **dispersion suppressor**, a **non-periodic** set of magnets that transforms FODO (η_x, η'_x) to zero.

- Consider two FODO cells with different total bend angles θ_1, θ_2
 - Same quadrupole focusing to not disturb $eta_x, \Delta \phi_x$ much
 - We want this to match $(\eta_x,\eta_x')=(\hat{\eta}_x,0)$ to $(\eta_x,\eta_x')=(0,0)$
 - $\alpha_x = 0$ at ends to simplify periodic matrix

efferson Lab

(FODO Dispersion Suppressor) $\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} \cos 2\Delta\phi_x & \beta_x \sin 2\Delta\phi_x & D(s)\\ -\frac{\sin 2\Delta\phi_x}{\beta_x} & \cos 2\Delta\phi_x & D'(s)\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{\eta}_x\\0\\1 \end{pmatrix}$ $D(s) = \frac{L}{2} \left(1 + \frac{L}{8f} \right) \left[\left(3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right]$ multiply matrices \Rightarrow $D'(s) = \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2}\right) \left[\left(1 - \frac{L^2}{4f^2}\right)\theta_1 + \theta_2\right]$ $\hat{\eta}_x = \frac{4f^2}{L} \left(1 + \frac{L}{8f}\right) \left(\theta_1 + \theta_2\right)$ $\theta_1 = \left(1 - \frac{1}{4\sin^2 \frac{\Delta \phi_x}{2}}\right)\theta \qquad \theta_2 = \left(\frac{1}{4\sin^2 \frac{\Delta \phi_x}{2}}\right)\theta$ two cells, one FODO bend angle \rightarrow reduced bending $\theta = \theta_1 + \theta_2$

37

Jefferson Lab