
Introduction To Accelerator Physics: Lecture Notes 4 Addendum

Tuesday September 13, 2011

1 Promised Derivation #1

I promised that I would clarify the “magic step” in moving to the rotating frame of reference
in

F =
d

dt
(γmẋ) ' γm

(
ẍ− v2

R

)
when deriving the equations of motion for a particle moving near a design circular orbit in
a transverse magnetic field.

1.1 Invoking first year physics approach

Consider a particle moving along the design trajectory. It has x = 0 by definition since x is
a (small) horizontal deviation from this design trajectory. The design particle experiences a
magnetic Lorentz force:

F = −qvB
which is constant and always perpendicular to the direction of motion. This force produces
circular motion of constant radius R; the sign has been chosen to be consistent with positive
being “out” of the circle. The design particle is always undergoing a centripetal acceleration
and force of

a = −v
2

R
⇒ F = −mv

2

R

The centripetal force is entirely supplied by the Lorentz magnetic force, so we can equate
these two forces, giving the now-familiar

qB =
mv

R
⇒ BR =

p

q
(1.1)

In the “magic step” case, we have also expanded the fields around the design trajectory
particle, with B(x = 0) = B0. We therefore need to include the centripetal acceleration
term in the force equation to make the force equation hold even when x = 0, which implies
that the x = 0 case must reduce to Eqn. (1.1).

1.2 Constructive approach

This derivation follows that described in the Wikipedia article on “Rotating reference frame”,
http://en.wikipedia.org/wiki/Rotating_reference_frame. Consider a rotating refer-

ence frame with unit basis vectors (̂i, ĵ, k̂) in the rotating frame that correspond to our (also
rotating frame) coordinates (x̂, ŝ, ŷ). The rotating basis can be expressed as

~i(t) = (cos Ωt, sin Ωt)

~j(t) = (− sin Ωt, cos Ωt)
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where Ω is the rotation frequency and ~Ω points in the right hand direction of the rotation
or Ω̂ = ŝ× x̂ = ĵ ×~i. Time derivatives of these basis vectors are

d

dt
û = ~Ω× û

where û is î or ĵ.

The time derivative of a vector function ~f has contributions that are from the inertial
reference frame, and from the time-dependence of the coordinates in the rotating frame:

d

dt
~f =

(
d~f

dt

)
r

+ ~Ω× ~f

where the r subscript indicates the time derivative in the rotating reference frame. Extending
this to acceleration, a second time derivative of a vector quantity, we have

F/m = ~ar = (~ai)− (2~Ω× ~vr)− (~Ω× (~Ω× ~r))−

(
d~Ω

dt
× ~r

)
This equation relates the observed accelerations in the inertial and rotating reference frames
(~ai and ~ar), and includes three additional terms. In order from left to right, they are the
Coriolis Force, the Centrifugal Force, and the Euler Force.

The Euler force is zero because the angular frequency is ~Ω is constant. This leaves the
Coriolis and Centrifugal forces. We have assumed the paraxial approximation, so particle
velocity in the rotating frame of reference (i.e. relative to the design particle, ~vr) is much

smaller than the overall velocity of rotation ~Ω× ~r. So we assume that the centrifugal force
dominates. Note that this is a “fictitious” force — this is needed to balance the kinematics
but there is no actual force accelerating the particle outwards. It’s the centripetal force
(towards the center of the circle) that is real, and that keeps the particle moving in a rotating
reference frame.

Substituting Ω = v/r and noting that all quantities are perpendicular gives

Fcentrifugal = −mv2/r

2


	Promised Derivation #1
	Invoking first year physics approach
	Constructive approach


