
Thu June 16 Lecture Notes: Lattice Exercises I

T. Satogata: June 2011 USPAS Accelerator Physics

Most of these notes follow the treatment in the class text, Conte and MacKay, Chap-
ter 6 on Lattice Exercises. The portions on orbit correction follow Edwards and Syphers,
section 3.4. By the end of these lectures, you should understand a bit about orbit correc-
tion in a circular accelerator, how to calculate optics parameters for a FODO lattice (and
other combinations of drifts, dipoles, and quads), FODO lattice stability, and FODO lattice
dispersion.

1 Review

Rcall that the parameterization of the one-dimensional periodic transfer matrix is
given by Conte/MacKay (5.21-22):

Mperiodic = I cosµ+ J sinµ = eµJ (1.1)

where

J ≡
(

α(s) β(s)
−γ(s) −α(s)

)
J2 = −I (1.2)

α(s) ≡ −β′(s)/2 and γ(s) ≡ (1 + α(s)2)/β(s). Here I’ve included the explicit s-dependence.
β(s) is the square of the envelope function w(s), or amplitude scaling of particle motion,
Conte/Mackay (5.69):

x(s) =
√
Wβ(s) cos[ψ(s) + ψ0] (1.3)

where

ψ′(s) = 1/β(s) ψ(s) =

∫
ds/β(s) β(s) = β(s+ C) (1.4)

The beta function has the periodicity of the lattice, as Waldo showed, but the phase
advance ψ(s) does NOT have this periodicity — integrating it around the accelerator
gives us an extra phase advance of µ ≡ 2πQ where Q is called the betatron tune. (See
Conte/Mackay Eqns. (5.54–55).) There are beta functions, phase advances, and betatron
tunes for each plane (H,V ). Note that some references use ν for tunes instead of Q and that
since the transfer matrix around one turn of the accelerator is periodic, we have

Mone turn = I cos 2πQ+ J sin 2πQ = e2πQJ (1.5)

In the weak focusing betatron case where the field index is 0 ≤ n ≤ 1, Qx =
√

1− n and
Qy =

√
n, the tunes must also be in the range 0 ≤ Qx,y ≤ 1. Indeed, this is practically what

is defined as weak focusing. In contrast, accelerators with alternating quadrupole focusing
that lead to Q > 1 are termed strong focusing.

To propagate position and angle from one location s = s0 to another s location, both
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with known Twiss parameters, we use MacKay and Conte (5.52):

M(s|s0) =


√

β(s)
β0

[cosµ(s) + α0 sinµ(s)]
√
β0β(s) sinµ(s)

− [α(s)−α0] cosµ(s)+[1+α0α(s)] sinµ(s)√
β0β(s)

√
β0
β(s)

[cosµ(s)− α(s) sinµ(s)]

 (1.6)

=

 1√
β(s)

0

α(s)√
β(s)

√
β(s)

−1( cosµ sinµ
− sinµ cosµ

)( 1√
β0

0
α0√
β0

√
β0

)
(1.7)

= T (s)−1R(µ)T (0) (1.8)

Even though (1.6) looks horrible, it can be decomposed into local transformations T (s) into
normalized phase space, and a separate pure rotation matrix R(µ) that rotates through
the phase advance. You’ll see this in problem 5-4 of tonight’s homework.

Figure 1 shows particle motion through a FODO lattice, a series of alternating focusing
and defocusing quadrupoles. The dark lines that are plotted are ±

√
β(s), which is directly

proportional to the maximum amplitude of the particle oscillation. You can see why the
beta function is also called the envelope function! Waldo’s showed something like this and
you’ve also seen it in the labs. Let’s analyze the FODO lattice in more detail and calculate
some things about it after a brief digression into a real application of what you’ve learned
so far.

Figure 1: This figure shows a plot of betatron oscillations, equation (1.3) and Conte/MacKay Fig. 5.3,
through a regular FODO lattice. Waldo showed this picture earlier. If you follow the trajectory, you can
see that the kicks alternate between focusing and defocusing, and the betatron oscillation is slow compared
to the periodicity of the FODO lattice. This example has about 6.5 FODO cells per betatron oscillation,
so this FODO lattice has a phase advance per cell of about 2π/6.5 = 55 degrees. What is the relationship
between the focal length f and the FODO cell length L here?

2 Steering Errors and Orbit Correction

Suppose we have a single steering error in an otherwise perfect circular accelerator that gives
a kick

∆x′ =
∆B l

(Bρ)
(2.1)

loated without loss of generality at s = 0. What is the new closed (1-turn periodic) orbit?
Say that the orbit immediately downstream of this kick is (x0, x

′
0). If we propagate this orbit

through one turn with a one-turn matrix Mone turn and then proceed through the kick, we
should get the same conditions. This the definition of closed orbit, the fixed point of the
one-turn map. So

Mone turn

(
x0
x′0

)
+

(
0

∆x′

)
=

(
x0
x′0

)
. (2.2)
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Solving for (x0, x
′
0) gives (

x0
x′0

)
= (I −Mone turn)−1

(
0

∆x′

)
. (2.3)

We can now use Mone turn = e2πQJ to perform a little trick:

(I −Mone turn)−1 =
(
I − e2πQJ

)−1
=
[
eπQJ

(
e−πQJ − eπQJ

)]−1
(2.4)

= −(2J sin πQ)−1
(
eπQJ

)−1
(2.5)

=
1

2 sinπQ
Je−πQJ (2.6)

=
1

2 sinπQ
(J cosπQ+ I sin πQ) (2.7)

The closed orbit solution is then(
x0
x′0

)
= (I −Mone turn)−1

(
0

∆x′

)
=

∆x′

2 sinπQ

(
β0 cosπQ

sin πQ− α0 cos πQ

)
(2.8)

where the twiss parameters (β0, α0) are at the position of the kick. We can then propagate
this to any location s in the ring with the general M(s|s0) matrix (1.6) to find

∆x(s) =
∆x′β1/2(s)β

1/2
0

2 sinπQ
cos[(ψ(s)− ψ0)− πQ] (2.9)

=
∂x(s)

∂x′(0)
∆x′(s = 0) (2.10)

This result really represents a standing wave solution through the accelerator. Note some
interesting points about (2.9):

• The sensitivity to the kick is proportional to the square root of the product of the beta
functions at the kick location and position observation. Dipole errors have the worst
effect at areas of high β.

• The orbit change is inversely proportional to sin πQ. For integer Q, dipole error effects
diverge. This is an example of a resonance. We will later see that quadrupole error
effects are inversely proportional to sin 2πQ and so on to higher orders.

• Even though the kick is only an angle kick, there is a closed orbit change ∆x at the
kick location.

An example of a comparison of measurements and a calculation from (2.9) for a single dipole
corrector change in RHIC is shown in Fig. 2.

(2.9) can be used as a fundamental equation of orbit correction since it relates a position
change anywhere in the ring x(s) to a change in a dipole corrector change ∆x′ elsewhere in
the ring. Because it is linear we can then write

∆x1
∆x2
· · ·

∆xn

 =


∂x1
∂x′1

∂x1
∂x′2

· · · ∂x1
∂x′m

∂x2
∂x′1

∂x2
∂x′2

· · · ∂x2
∂x′m

· · · · · · · · · · · ·
∂xn
∂x′1

∂xn
∂x′n

· · · ∂xn
∂x′m




∆x′1
∆x′2
· · ·

∆x′m

 (2.11)

This (non-square!) matrix can be inverted optimally using, for example, singular value de-
composition to find a solution to the changes in all m dipole correctors (∆x′1,∆x

′
2, · · · ,∆x′m)

to effect an orbit change in all n beam position monitor locations (∆x1,∆x2, · · · ,∆xn).

3



Figure 2: Lattice diagram and (vertical) “difference” orbit from RHIC, comparing measurement and modeled
difference orbit from (2.9).

Figure 3: Two ways of calculating transfer for a regular FODO cell of length L with two thin quadrupoles.
The one on the left is not symmetric and gives optics at one side of the focusing quad. The one on the right
is symmetric and gives optics in the center of the focusing quadrupole, where we expect to locate βmax even
in the case of thick quadrupoles.

3 FODO Lattice

One of the most common lattice layouts in modern separated-function accelerators is the
FODO lattice, a lattice with alternating focusing and defocusing quadrupoles separated by
drift spaces or dipoles. We have started to see how this combination gives you a net focusing.
Using the thin lens approximation for equal-strength quadrupoles (i.e. assuming their focal
lengths are much larger than their lengths), separating them by L/2 length drift spaces so
the FODO “cell length” is ≈ L , we find:

MFODO =

(
1 L/2
0 1

)(
1 0
1
f

1

)(
1 L/2
0 1

)(
1 0
− 1
f

1

)
(3.1)

=

(
1− L

2f
− L2

4f2
L+ L2

4f

− L
2f2

1 + L
2f

)
(3.2)

Let’s assume that we have a string of FODO cells. The system is periodic through every
FODO cell, so the transfer matrix of each FODO cell must be expressible in the form of
(1.1): (

1− L
2f
− L2

4f2
L+ L2

4f

− L
2f2

1 + L
2f

)
=

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
(3.3)
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If these are equal, their traces must be equal:

2− L2

4f 2
= 2 cosµ = 2− 4 sin2 µ

2
(3.4)

⇒ sin
µ

2
= ± L

4f
(3.5)

using the trig identity cos(2µ) = cos2 µ− sin2 µ = 1− 2 sin2 µ. (3.5) relates the FODO cell
phase advance µ to the parameters L and f that we used to construct it.

For a FODO lattice, the maximum of the beta function β = βmax is located at the center
of the focusing quadrupole. The transfer matrix from the center of one focusing quadrupole
(with focal length f) to another in this lattice is found by splitting the focusing quadrupole in
half (focal length 2f) as shown in Fig. 3. This even works if we use the thick lens quadrupole
transfer matrix.

Mf to f =

(
1 0

−1/2f 1

)(
1 L/2
0 1

)(
1 0

1/f 1

)(
1 L/2
0 1

)(
1 0

−1/2f 1

)
=

 1− L2

8f2
L
(

1 + L
4f

)
L
4f2

(
L
4f
− 1
)

1− L2

8f2

 (3.6)

At the maximum of the beta function in the (split) focusing quadrupole, α(s) = −β′(s)/2 =
0, so this matrix can also be written as

Mf to f =

(
cosµ βmax sinµ

− sinµ/βmax cosµ

)
(3.7)

Equating first diagonal, then upper-right off-diagonal terms gives

cosµ = 1− L2/8f 2 ⇒ sin(µ/2) =

√
1− cosµ

2
=

L

4f

βmax = L

(
1 + sin(µ/2)

sinµ

)
(3.8)

The minimum of the beta function, βmin, occurs at the center of the defocusing quadrupole,
so it may be found by following the above analysis replacing f with −f , producing:

βmin = L

(
1− sin(µ/2)

sinµ

)
(3.9)

For example, the phase advance per FODO cell at RHIC is about 78 degrees and the
length of the RHIC FODO cell is about 30 m, so we can calculate that βmax=50 m and
βmin=10.7 m. Figure 4 shows one sixth of the RHIC injection optics lattice, and you can
readily see that the formulas for βmin,max work very well.

Note that we can calculate the Twiss parameters at any point in the FODO cell by
changing the cut point for our lattice transport. Alternatively you can use the result of
tonight’s homework (problem 5-5) to propagate these Twiss functions through the FODO
cell. Propagating through an entire FODO cell should give an identity matrix regardless of
the cut point because the optics are periodic. We can test this for our example above using
Mf to f from (3.6). This is thankfully NOT part of your homework. But it works: β2

α2

γ2

 =

 M2
11 −2M11M12 M2

12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22

 β1
α1

γ1

 (3.10)

Mf to f =

(
1− L2/8f 2 L(1 + L/4f)

L2/16f 3 − L/4f 2 1− L2/8f 2

)
(3.11)
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Figure 4: The RHIC injection lattice and beta functions. This shows one sixth of the RHIC lattice as Waldo
has shown earlier; apply mirror antisymmetry and repeat the lattice three times to get the full lattice. Solid
lines are βx(s); dotted lines are βy(s). The magnet lattice is shown at the top of the graph; short blocks are
bending dipoles; taller blocks are quadrupoles. Low-beta insertions are clearly visible. Is the quadrupole at
s=300m horizontally focusing or defocusing? How many FODO cells are in the regular section? RHIC has
a total horizontal tune of about 28.23; does this number of FODO cells make sense?

4 FODO Lattice Stability

Sometimes we do not want horizontal and vertical quadrupoles in a FODO lattice to have
the same strengths, such as when we are matching the beam size into different optics. If we
re-parameterize the quadrupole strengths as

−F ≡ − L

2fF
D ≡ L

2fD
(4.1)

Calculating the trace of the FODO lattice matrix now gives something more general than
(3.5):

cosµ = 1 +D − F − FD

2
sin2 µ

2
=
FD

4
+
F −D

2
(4.2)

Recall from Waldo’s lecture that the stability requirement is that the phase advance µ is
real (since the eigenvalues of the transport matrix are e±iµ), or

−1 < cosµ < 1 or 0 < sin2 µ

2
< 1 (4.3)

What are the boundaries of real µ in terms of F and D? One is where sin2 µ
2

= 0, and we
have

F =
2D

2 +D
(4.4)

The second case, sin2 µ
2

= 1, requires that F < 2 for stability for positive D. The reverse
conditions where we reverse the roles of F and D also provide boundaries, and the final stable
area in the (F,D) parameter space is shown in Fig. 5.

5 FODO Cell Dispersion

A FODO cell is a linear system in more than one way — the design orbit is straight! We
want to steer the beam and eventually wrap the beamline around back on itself so we can
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Figure 5: Stability or “necktie” diagram for an alternate focusing lattice, including the FODO lattice where
the dimensionless parameterization is F ≡ L

2fF
and D ≡ L

2fD
. The shaded area is the region of stability.

Figure 6: The π
2 lattice insertion.

make a storage ring, so we also must consider cases where the space between the FODO
quadrupoles is not a simple drift, but filled with the bending field of a dipole. To make
the math simpler (and to save my sanity), we’ll assume that the length of the FODO cell
is L = ρθc and there are no drifts. The total bending angle of the cell is θc. We will use
the symmetric layout of the FODO cell in Fig. 2 to make some math simpler for dispersion
suppressors, which we’ll discuss later.

The transfer matrix for the single FODO cell with the dispersive component included is

Mf to f =

 1 0 0
− 1

2f
1 0

0 0 1

 1 L
2

Lθc
8

0 1 θc
2

0 0 1

 1 0 0
1
f

1 0

0 0 1

 1 L
2

Lθc
8

0 1 θc
2

0 0 1

 1 0 0
− 1

2f
1 0

0 0 1

(5.1)

=


1− L2

8f2
L+ L2

4f
L
2

(
1 + L

8f

)
θc

− L
4f2

(
1− L

4f

)
1− L2

8f2

(
1− L

8f
− L2

32f2

)
θc

0 0 1

 (5.2)

where we have kept only first order in θc since usually θc << 1.
Waldo talked a bit about the dispersion function η(s) earlier. The periodic dispersion

function of the FODO cell can be obtained from η
η′

1

 =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 η
η′

1

 (5.3)

The bottom row of M in (5.2) is trivial, so we can also write the dispersion as a nonhomo-
geneous equation: (

η
η′

)
= M ′

(
η
η′

)
+

(
M13

M23

)
(5.4)(

η
η′

)
= (I −M ′)

(
M13

M23

)
(5.5)
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where M ′ is the upper left 2x2 block of (5.2). This is calculable and gives the ηmax, just like
we had βmax:

ηmax =
Lθc
4

(
1 + L

2
sin µ

2

sin2 µ
2

)
(5.6)

η′ = 0 (5.7)

This is rather unsurprisingly a lot like the formula for βmax, except now the maximum
dispersion also scales linearly with the total length of the FODO cell, Lθc. The minimum of
the dispersion is also easy to find:

ηmin =
Lθc
4

(
1− L

2
sin µ

2

sin2 µ
2

)
(5.8)

η′ = 0 (5.9)

6 A Simple Lattice Insertion

In any FODO cell one or both quadrupole magnets can be moved away leaving room for
actual straight sections, slightly modifying the lattice dispersion without altering the optics
of the lattice, as thoroughly discussed in the previous sections. Obviously, such free spaces
may not be sufficient to host long items like septum magnets for injection and extraction,
chains of rf cavities, etc. Longer straight sections have to be provided, leaving the optics of
the machine unaffected. How do we make the longest straight section possible?

An elegant solution is the so-called π
2

insertion. This insertion has a long straight section
of length L2, encompassed by two quadrupoles, one focusing and one defocusing, and further
symmetric straight sections of length L1. This is schematically shown in figure 6.

Assuming the quadrupoles have equal focal length f , we calculate the transfer matrix
again:

M =

(
1− L1L2

f2
+ L2

f
2L1 + L2 − L2

1L2

f2

−L2

f2
1− L1L2

f2
− L2

f

)
(6.1)

We want this insertion to match into the periodicity of the lattice, so it must match to our
general periodic lattice description of (1.1):

M = I cosµ+ J sinµ =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
(6.2)

Taking the difference of the diagonal terms gives

L2 = αf sinµ (6.3)

and L2 is maximized when µ = π
2
. (It’s now obvious why this is called a π

2
insertion.) Then

cosµ = 0 and we can get other parameters in terms of the lengths L1 and L2:

f 2 = L1L2 α =
L2

f
γ =

L2

f 2
β = L1 + L2 (6.4)

and we can design our insertion to match into our FODO lattice.
One surprising observation is that the transfer matrix now reduces to

M = J (6.5)

and recall that M2 = −I! So we can now design an interesting insertion by putting two of
these insertions back to back. This is a simple case of a low-β insertion.
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