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1 The Driven, Damped Simple Harmonic Oscillator

Consider a driven and damped simple harmonic oscillator with resonance frequency ω0:

ẍ(t) + ζω0ẋ(t) + ω2
0x(t) = ω2

0X0 cos(ωt) (1.1)

where the various terms are inserted to maintain units except the damping term ζ which is
dimensionless. Assume a solution of the form

x(t) = x0 cos(ωt− φ)

as the system should eventually settle to be periodic in the driving frequency with some
amplitude x0 and phase φ relative to the driving phase. Then we have

ẋ(t) = −ωx0 sin(ωt− φ)

ẍ(t) = −ω2x0 cos(ωt− φ)

and the equation of motion, Eqn. (1.1), becomes

−ω2x0 cos(ωt− φ)− ζω0ωx0 sin(ωt− φ) + ω2
0x0 cos(ωt− φ) = ω2

0X0 cos(ωt)

(ω2
0 − ω2)x0 cos(ωt− φ)− ζω0ωx0 sin(ωt− φ) = ω2

0X0 cos(ωt)

Now

cos(ωt − φ) = cos(ωt) cosφ+ sin(ωt) sinφ

sin(ωt − φ) = sin(ωt) cosφ− cos(ωt) sinφ

So we then have

(ω2
0−ω2)x0[cos(ωt) cosφ+sin(ωt) sinφ]−ζω0ωx0[sin(ωt) cosφ−cos(ωt) sinφ] = ω2

0X0 cos(ωt)

Grouping time dependence of terms gives[
(ω2

0 − ω2)x0 cosφ+ ζω0ωx0 sinφ− ω2
0X0

]
cos(ωt) +[

(ω2
0 − ω2)x0 sinφ− ζω0ωx0 cosφ

]
sin(ωt) = 0

For this equation to always hold, the coefficients of each time dependent term must be zero:

(ω2
0 − ω2)x0 cosφ+ ζω0ωx0 sinφ = ω2

0X0

(ω2
0 − ω2)x0 sinφ− ζω0ωx0 cosφ = 0

The second equation gives φ:

φ = tan−1

[
ζω0ω

(ω2
0 − ω2)

]
(1.2)
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To solve the first equation for x0, note that tanφ can be viewed as the ratio of opposite over
adjacent sides of a right triangle of hypoteneuse

√
(ω2

0 − ω2)2 + ζ2ω2
0ω

2, so

sinφ =
ξω0ω√

(ω2
0 − ω2)2 + ζ2ω2

0ω
2

cosφ =
(ω2

0 − ω2)√
(ω2

0 − ω2)2 + ζ2ω2
0ω

2

which then gives

x0 =
ω2

0X0√
(ω2

0 − ω2)2 + ζ2ω2
0ω

2

or

x0 =
X0√

(1− (ω/ω0)2)2 + ζ2(ω/ω0)2
(1.3)

The equation for φ can also be written

φ = tan−1

[
ζ

(ω0/ω − ω/ω0)

]
(1.4)

This is intuitively reasonable since φ = 0 if there is no damping (ζ = 0). The peak of x0 is
on resonance at ω = ω0, where x0/X0 = 1/ζ. Indeed, this is a special term, defined as the
quality factor Q of the resonator:

Q ≡ x0(ω = ω0)

X0

=
1

ζ

x0/X0 and φ/π are plotted in Fig. 1 for various values of Q. Note that the resonance becomes
more sharply peaked and the phase crossing from 0 to π becomes sharper as Q increases. In
rough terms, Q is the number of oscillations that a damped oscillator undergoes after being
excited by a delta function excitation before falling to a negligible amplitude.

Figure 1: Resonant amplitude response (scaled to driving amplitude X0, left) and phase response (right) vs
frequency for various resonance Q.

2 Weak Damping

The most interesting case for accelerator RF structures is weak damping, since we gener-
ally want most of our energy to “ring” resonantly in the cavity and be available for beam
acceleration, rather than being dissipated in resistive or transport losses. The highest Q
values have been achieved in superconducting RF (SRF) cavities, where Q can be upwards
of 1010−11.
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For a weakly damped oscillator (ζ � 1 or Q� 1) near resonance (δ ≡ ω − ω0 � ω0), we
can approximate (ω/ω0)2 ≈ (1 + 2δ/ω0). Keeping only terms to second order in δ and ζ in
Eqn. (1.3), we find

x0

x0(ω = ω0)
=

ζ√
4δ2/ω2

0 + ζ2
=

ζω0√
4δ2 + ζ2ω2

0

(2.1)

This goes to 1 as δ → 0. At δ = ±ζω0/2, the amplitude is reduced to 1/
√

2 of the maximum,
x0 = x0(ω = ω0)/

√
2. 1/

√
2 is used because the power is proportional to this amplitude

squared, and the 1/2 power point is the 3 dB attenuation point. Hence the resonance
width, 2δ at this point, is

resonance width ≡ ∆ω = ζω0

δ = ±ζω0/2 also happen to be the points where the phase lag is π/4 and 3π/4. The fractional
width of the peak is

∆ω

ω0

= ζ = 1/Q ⇒ Q =
ω0

∆ω
(2.2)

so for a weakly damped oscillator, the product of the resonance width and height are constant
and the area under the peak stays roughly constant independent of Q. Also note that when
Q is very large, the resonance widths are small. An ensemble of SRF cavities must be
carefully tuned so their primary resonant frequencies align. However, small manufacturing
and tuning differences between constructed SRF cavities will make it unlikely that other
primary frequencies of the cavity assembly (higher order modes or HOMs) will be within
their respective ∆ω of each other and thus interfere. These HOMs are therefore usually
treated as independent resonators except in very large SRF installations such as the ILC,
where the sheer number of cavities may lead to HOM crosstalk.

Fig. 1 also suggests that the quality factor Q can be measured from the phase φ. In
particular, the phase response of a weakly damped resonator is linear near the resonance,
ω = ω0 + δ:

φ ≈ tan−1

[
ζ

(1− δ/ω0)− (1 + δ/ω0)

]
= tan−1

[
−ω0

2δQ

]
(2.3)

Linearizing around φ = π/2 with Φ = φ−π/2, tanφ = − cot Φ ≈ 1/Φ, we find Φ = 2δQ/ω0,
or

dΦ

dω
=

2Q

ω0

(2.4)

As expected, the slope of the phase near resonance is large when Q is large.
As mentioned, the square of Eqn. (2.1) is proportional to the power stored in the resonant

system. This equation is known as a Lorentzian function, related to the Cauchy distribution,
which is typically parameterized [1] by the parameters (x0, γ, I) as:

f(x;x0, γ, I) = I

[
γ2

(x− x0)2 + γ2

]
Q may be found for a given resonance by measuring the width at the 3 dB points directly,
by evaluating the zero-crossing phase slope (2.4), or by fitting the Lorentzian to the power
response.

3 Superconducting Cavity Power Spectrum

A typical real power spectrum for TM110 frequencies is shown in Fig. 2, where the amplitudes
of all four transfer function measurements (S31, S41, S32, S42) through the cavity HOM ports
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Figure 2: Plot of real part of power spectrum for the R100-8 cavity TM110 mode, for various transfer
functions.

were acquired. There are 7 “groups” of peaks together, which correspond to the seven main
dipole TM110 modes of the CEBAF C100 RF cavity.

The highest Q HOMs are those with the tallest, narrowest peaks, since Q is a measure
of resonance sharpness. For illustration purposes, we zoom in on the HOMs at the furthest
right of Fig. 2 in Fig. 3. Here you can see that there are multiple resonances that cross-
talk near 2.224 GHz, but the resonance near 2.226 GHz is relatively isolated. The center
of the resonance is ω0=2.22594 GHz, and the resonance width is about ∆ω ≈ 1 kHz, so
Q ≈ 2.2× 106.
Q for HOMs is very important for a phenomenon known as beam breakup in linear

and recirculating linear accelerators. In beam breakup, particular HOMs in a cavity can
be excited by passing beam, which then in turn excites oscillations in later bunches, which
then excites the HOM in a feedback loop. The length of time that an HOM resonates in the
cavity depends on its Q (or damping), so BBU is usually avoided by designing SRF cavities
so the HOM Qs are kept below some design threshold.

4 Loaded vs Unloaded Q, Fill Time

To now, we have considered properties of our forced, damped harmonic oscillator on its own.
However, RF cavities (and oscillators) need to be driven by an external force coupled to
the oscillator. For RF cavities, this is usually provided through a transmission line carrying
electromagnetic power from a klystron through a waveguide. Fig. refFIG:LUMPCAV shows
an electric schematic of such an inductive coupling, from Conte and MacKay.
Zeff is the effective impedance as seen from the input line. Often this input line has its

own impedance of 50 Ω so we usually try to avoid reflected power by matching Zeff = 50 Ω.
Because the impedances of the line and cavity must be matched, the power dissipated in the
cavity (proportional to the damping, or inversely proportional to Q) must be the same as
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Figure 3: Zoom of real part of power spectrum for the R100-8 TM110 mode, for various transfer functions.

dissipated in the power source, so we often speak of a loaded Q,

QL =
Q

2
. (4.1)

as well as an unloaded Q for the bare cavity.

Figure 4: A transmission line on the left coupled to an RF cavity of modeled impedance L2, resistance R,
and capacitance C on the right through an inductor loop with mutual inductance M =

√
L′L′′, from Conte

and MacKay Fig. 9.5.

We have to turn on and off our cavities. How long does it take to reach a reasonably
steady state? Solving the driven harmonic oscillator in the case where the driving turns on
as a step function gives

x(t) = X0Q
(
1− e−ω0t/2Q

)
sin(ω0t) (4.2)

The characteristic rise and fall times (or filling time) of the cavity, τ , is found where the
exponent is 1/2, or where

τ =
Q

ω0

=
2QL

ω0

(4.3)

Note that there is a typo on p. 203 of Conte and MacKay in equation (9.95) for this ex-
pression. The response of Q = 16 and Q = 64 cavities is shown in Fig. 5. It takes about
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Q oscillations of the on-frequency driving term to bring the oscillator up to full amplitude.
Usually a step function isn’t used because the back-voltage from the cavity will be large and
may trip the driving RF source.

Figure 5: Driven damped harmonic oscillator transient response to a step-function turn-on with Q=16 and
Q=64. Note that it takes more RF cycles to fill a high Q cavity than a lower Q cavity.

5 Transit Time and Shunt Impedance

For a standing wave accelerating RF structure (the most common type of structure for RF
cavities), consider the electric field across a gap length g as roughly constant and varying
with time with the cavity frequency ω0:

Es = E0 cosω0t (5.1)

The RF wavelength is λ = 2πc/ω0. The total energy gain when a particle crosses the cavity
gap is then

∆E = E

∫ g/2

−g/2

cos

(
ω0s

βrc

)
ds = eE0 g Ttr = e V0 (5.2)

Ttr =
sin(πg/βrλ)

(πg/βrλ)
(5.3)

where βr = v/c is the relativistic beta and V0 = E0gTtr is the effective voltage of the gap.
Ttr is called the transit time across the RF cavity, and it is directly related to how efficient
the RF cavity is at converting voltage to particle acceleration. One can make Ttr approach
1 by lowering the gap size g for a given cavity, but lowering the gap size too far can lead to
sparking between RF electodes. For may modern DTLs, Ttr is optimized to be about 0.8 to
0.85.

Shunt impedance is used to describe the relationship between available input power
and achievable voltage. This is the voltage at which the input power to the cavity equals
the losses in the cavity. Per Conte and MacKay (9.99), this relationship looks like a classical
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circuit relationship:

Zshunt =
Vdc

〈Ploss〉
(5.4)

where Vdc is the voltage that a DC accelerator would require to provide the given beam
power, and 〈Ploss〉 is the excess power delivered to the accelerating structure that is not
delivered to the beam.

This has some interesting consequences, such as a need for multi-cell cavities. If we have a
single-cell cavity with shunt impedance Zshunt, then we can maintain a voltage V with power

Psingle cavity = V 2/Rshunt (5.5)

to the cavity. However, if the system has N cells, each cell can provide gradient and we only
need a proportional power of

Pmulticell = N(V/N)2/Rshunt = Psingle cavity/N (5.6)

There is less stored energy in each cavity, so we cannot accelerate as much beam current.
We also need more space for cavities at a given frequency with multiple cells. However,
the scaling is still such that high gradients in single passes require multiple cells, hence the
proliferation of SCRF structures that have upwards of 5, 7, or even 9 cells.
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