
Wed June 22 Lecture Notes: Coordinate Transformations and

Nonlinear Dynamics

T. Satogata: June 2011 USPAS Accelerator Physics

Most of these notes kindasortasomewhat follow the treatment in the class text, Conte and
MacKay, Chapter 10 on Resonances. Additional profitable recommended reading is Edwards
and Syphers, Chapter 4, and S.Y. Lee’s “Accelerator Physics”, section 2.VII. Nonlinear
dynamics are intrinsic to many large synchrotrons, where the natural chromaticity scales as
the (strong focusing) tune and must be corrected with nonlinear sextupole fields. By the end
of this lecture, you should have some exposure to the Hamiltonian approach to accelerator
maps, canonical transformations and action-angle coordinates, the Floquet transformation, a
couple of nonlinear resonances, Chirikov resonance overlap and conditions leading to chaotic
motion in accelerators, why he’s called Donkey Kong when he’s not a donkey, and the answer
to life, the universe, and everything. (In case we don’t get there before the end of the lecture,
the answer to the last part is 42.) I’ve also put up some other lecture notes on Lie operator
approaches to accelerator dynamics on the class web site.

1 Another Quick Refresher

For the majority of this lecture, we’ll consider only transverse particle motion. The two-
dimensional Hamiltonian for linear particle motion can be written as

H(x, x′, y, x′; s) =
x′2

2
+Kx(s)

x2

2
+
y′2

2
+Ky(s)

y2

2
. (1.1)

Note that this is just the Hamiltonian for our simple harmonic oscillators with s-dependent
focusing in both transverse coordinates (x, y). This is separable, so we’ll treat only one
dimension until we introduce coupling terms from nonlinearities. Hamilton’s equations,

x′ =
∂H

∂x′
(x′)′ = −∂H

∂x
(1.2)

immediately give the identity x′ = x′ (so x′ really is the conjugate momentum to x), and

x′′ +Kx(s)x = 0 (1.3)

This is a simple harmonic oscillator with a variable focusing strength, or Hill’s equation.
All the matrix work we did through last week to describe our lattice is really solving this
second-order differential equation (hence 2×2 matrices!) in piecewise fashion through drifts,
dipoles, and quadrupoles.

Our solution to the one-dimensional Hill’s equation was parameterized as Conte and
MacKay Eqn. (5.59):

x(s) =
√
Wβ(s) cos[φ(s) + φ0] , (1.4)

the phase advance φ(s) and tune Q are defined by integrals of the inverse beta function,

φ(s) =

∫ s

s0

dS

β(S)
Q =

1

2π

∮
dS

β(S)
, (1.5)
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and W is the Courant-Snyder invariant.
To propagate position and angle from one location s = s0 to another s location, both

with known Twiss parameters, we use MacKay and Conte (5.52):

M(s|s0) =


√

β(s)
β0

[cosµ(s) + α0 sinµ(s)]
√
β0β(s) sinµ(s)

− [α(s)−α0] cosµ(s)+[1+α0α(s)] sinµ(s)√
β0β(s)

√
β0
β(s)

[cosµ(s)− α(s) sinµ(s)]

 (1.6)

=

 1√
β(s)

0

α(s)√
β(s)

√
β(s)

−1( cosµ sinµ
− sinµ cosµ

)( 1√
β0

0
α0√
β0

√
β0

)
(1.7)

= T (s)−1R(µ)T (0) (1.8)

Even though (1.6) looks horrible, it can be decomposed by local transformations T (s) into
normalized phase space, and a separate pure rotation matrix R(µ) that rotates through
a phase advance. We’ve seen this before, but now we’ll apply a few more canonical trans-
formations so we can concentrate on resonances and nonlinear dynamics. The objective of
these transformations is to get from what you know to the first equation in Chapter 10 of
Conte and MacKay. Some of what we’re covering here is known as normal form theory.

2 Normalized Coordinates

From the decomposition of M(s|s0), we have found a linear transformation T (s) at a given
lattice location s to new normalized coordinates (xN , x

′
N) (also seen in Conte and MacKay

problem 5-4 in your homework) where(
xN
x′N

)
= T (s)

(
x
x′

)
=

 1√
β(s)

0

α(s)√
β(s)

√
β(s)

( x
x′

)
(2.1)

Is this transformation canonical? detT (s)=1, and it turns out that all linear transformations
of this type with unit determinant, or elements of the SL2(R) group, are canonical. This is
a moderately complicated transformation in the sense that it involves β(s) and α(s), but it
does two nice things: the canonical coordinate and momenta (xN , x

′
N) are in the same units,

and the transport matrix is only a phase rotation. So particle motion in this normalized
phase space is along circles.

3 Action-Angle Coordinates

Since particle motion is now described by circles in normalized phase space as we proceed
through our lattice (albeit in a coordinate system that depends on β(s) and therefore depends
on where we are in the lattice), the next natural step is to look for a canonical transformation
that puts us in cylindrical coordinates, or action-angle coordinates. We expect that the
radius (or action) is going to be a constant of the motion and therefore invariant. (Gee, do
you think it’s going to be related to another invariant we’ve seen?) We also expect that our
phase will be φ(s) from the one-dimensional Hill’s equation ansatz, Eqn. (1.4), where we’ve
set φ0 = 0:

x(s) =
√
Wβ(s) cos[φ(s)] (3.1)

This is an equation that relates an old coordinate (x) to a new coordinate (φ). Let’s take
a derivative so we can use a generating function to find a proper canonical momentum to φ:

x′(s) = − x

β(s)
[α(s) + tanφ(s)] (3.2)
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Figure 1: The generating function mnemonic square. The generating functions Gi are func-
tions of the coordinates that bracket them in the square, and partial derivatives in the
direction of the arrows are positive; against the arrows they are negative. If the generating
function is time-dependent, the Hamiltonian also changes by dGi/ds. (Q as a coordinate is
a convention from Goldstein, and is not to be regretfully confused with the tune.)

where we’ve used

φ(s) =

∫ s

s0

dS

β(S)
⇒ φ′(s) =

1

β(s)
(3.3)

Why was this piece of math useful? Let’s take a brief detour into generating functions
for canonical transformations.

3.1 A quick aside: Generating functions

Generating functionsGi are used to generate canonical transformations, which permit changes
of coordinates while respecting Hamilton’s equations. For each degree of freedom, they are
functions of one old coordinate q or momentum p and one new coordinate Q or momentum P .
There are four of these combinations, imaginatively called type 1 through 4 generating func-
tions. A mnemonic diagram for coordinate transformations, similar to the thermodynamic
square, is shown in Fig. 1.

Now let’s look back at that equation for x′(s). It’s an original canonical momentum
expressed as a function of both old and new coordinates. This suggests that we will get a
type 1 generating function G1 if we integrate our equation for x′(s) over x:

G1(x, φ; s) =

∫ x

0

x′(s)dx = − x2

2β(s)
[α(s) + tanφ(s)] (3.4)

The new canonical momentum variable that is conjugate to the coordinate φ(s) is called the
action, or J :

J = −∂G1

∂φ
=

x2

2β(s)
sec2 φ(s) =

1

2β(s)

(
x

cosφ(s)

)2

=
W
2

(3.5)

This immediately draws a equivalence between the action J and adiabatic invariant W
for a given particle. We generally speak of single particles having “actions” (since it’s a
coordinate, even if it’s invariant here), while beam distributions have emittances. As we
add nonlinearities to the system, we’ll find that the action is no longer invariant and can be
treated perturbatively in terms of nonlinear magnet strengths.

The generating function (3.4) produces the coordinate transformations:(
x
x′

)
=
√

2J

( √
β(s) cosφ(s)

−
√

1/β(s)[sinφ(s) + α(s) cosφ(s)]

)
(3.6)
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Figure 2: The phase space ellipse in physical and normalized coordinates. The one-turn
matrix M “rotates” particles around a given phase space ellipse. With a suitable coordinate
transformation T to normalized coordinates (xN , x

′
N), this ellipse becomes a circle. The

portrayal of many iterations of the one-turn map within phase space is called a Poincaré
surface of section. Adding perturbative nonlinearities will deform the otherwise perfect
circles of the normalized coordinate system.

These equations are pretty familiar, but not so pretty. What about normalized coordinates?(
xN
x′N

)
=

(
1√
β

0
α√
β

√
β

)(
x
x′

)
=
√

2J

(
cosφ(s)
− sinφ(s)

)
(3.7)

J =
x2N + x

′2
N

2
φ(s) = arctan(x′N/xN) (3.8)

Much prettier!
The new Hamiltonian is

H̃(φ, J ; s) = H +
∂G1

∂s
=

J

β(s)
(3.9)

Something magical has happened; H̃ no longer depends on φ(s), the new coordinate, so the
new action J is a constant of the motion. This is nicely consistent with what we know so far.
We will see later that introducing perturbative nonlinearities into the equations of motion
includes terms here that have both J and φ components.

3.2 Floquet transformation

The simple action-angle Hamiltonian, H̃ = J/β(s), still has a bit of a problem — it depends
on the time-like variable s, so it’s not truly a constant of the motion. β(s) is not constant, so
the phase advance is modulated as we advance smoothly in s. To solve this problem, we can
perform a change of coordinates known as the Floquet transformation to new coordinates
(θ, I). This is often seen in nonlinear dynamics sections of texts (e.g. Edwards and Syphers
pp. 137 onward or Lee pp. 57 onward) so ring-wide Fourier expansions of nonlinear driving
terms can be calculated. Let’s pick our a new phase variable that advances linearly in s with
the unperturbed problem (which φ does not). The quantity∫

ds

β(s)
− 2πQ

s

C
= µ(s)−Q s

R
(3.10)

represents the difference or “flutter” between the the phase advance given by integrating
the beta function and the new “smooth” phase advance that we want, with C being the
accelerator design circumference, R = C/2π being the average accelerator design radius,
and µ(s) ≡

∫
ds/β(s). We want our new smooth phase coordinate to be

φ = θ + “flutter′′ = θ + µ(s)−Q s

R
(3.11)
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We can find a type 2 generating function that depends on the old coordinate φ and new
coordinate I:

G2(φ, I; s) = I
(
φ+Q

s

R
− µ(s)

)
(3.12)

The new conjugate coordinates (φ̄, J̄) are

θ = φ− µ(s) +Qθ, I = J (3.13)

The new Hamiltonian becomes QI (a real constant!), and the angle coordinate θ ranges from
0− 2π for every revolution around the accelerator. The equation of motion becomes that of
a free simple harmonic oscillator with frequency Q.

A Hamiltonian like this is what is used for the left hand side of Conte and MacKay (10.1),

d2x

dθ2
+Q2

Hx = 0 or (1− n)∆R (3.14)

(The driving term here is for a radial misalignment ∆R of all magnets in a weak-focusing
case.) The most important things to take away from all this is that transverse particle motion
can be canonically transformed to that of a simple harmonic oscillator (albeit through tangled
transforms). Accelerator nonlinear dynamicists treat nonlinearities as perturbations to this
equation (or the one-turn Hamiltonian below) by adding extra driving terms to the right
hand side as in the equation in Conte and MacKay.

4 One-turn maps

Note that the Hamiltonian H̃ in Eqn. (3.9) is periodic in s. If we integrate the motion
over one turn, removing the s dependence, we find the one-turn Hamiltonian that is
independent of the observation point!

H̃one turn = J

∮
ds

β(s)
= 2πQJ (4.1)

Just as nonlinearities are sometimes treated as driving terms of the simple harmonic oscillator
above, they are also sometimes treated as perturbations (depending on higher orders of φ
and J) that are added to this Hamiltonian.

We will also be concerning ourselves with phase space topology of Poincaré surfaces
of section that are one-turn maps. We can apply a version of Hamilton’s equations to
the integrated one-turn Hamiltonian to get difference equations that describe our Poincaré
surfaces:

∆φ =
∂H̃one turn

∂J
= 2πQ ∆J = −∂H̃one turn

∂φ
= 0 (4.2)

This can be readily seen in Fig. 2, where the one-turn map is a rotation that adds the
tune 2πQ and keeps the radius/action J fixed. From now on we will drop the cumbersome
tilde and “one-turn” labels and just use an integrated Hamiltonian H to concentrate on the
beauty of resonances and nonlinear dynamics.

5 Periodicity of Errors

We’ve gone through all this effort to establish simple periodicity in our phase coordinate θ
because constant magnetic field errors in a synchrotron are also periodic, so it’s natural to
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try to look at their Fourier decomposition. For example, when we looked at the orbit error
from a single dipole, we got a new closed orbit that scaled with

√
β at the dipole error:

xco(s) =

√
β(s)

2 sinπQ

∮ √
β(S)

∆B(S)

(Bρ)
cos[πQ+ φ(s)− φ(S)]dS (5.1)

=
Q
√
β(s)

2 sinπQ

∮ [
β3/2(θ)

∆B(θ)

(Bρ)

]
cos(πQ− πθ)dθ (5.2)

=
Q
√
β(s)

2 sinπQ

∮
f(θ) cos(πQ− πθ)dθ (5.3)

The bracketed term f(θ) is periodic in θ and isolates the dipole field and how we’re sensitive
to the dipole field. Since θ is smoothly periodic, though, we can write this as a Fourier
decomposition:

f(θ) ≡ β3/2(θ)
∆B(θ)

(Bρ)
=
∑
k=−∞

∞fkeikθ (5.4)

where the Fourier components are calculated from

fk =
1

2π

∮
β3/2 ∆B

(Bρ)
e−ikθ =

1

2πQ

∮ √
β

∆B

(Bρ)
e−ikθ (5.5)

to make all the terms explicit for the dipole case. For higher order multipole errors, these
terms have different β dependence that arises from their order of coordinate expansion, so a
quadrupole fourier component is

fk =
1

2π

∮
β

∆B′

(Bρ)
e−ikθ (5.6)

and so on.

6 Integer Resonances (from Conte/MacKay)

So let’s consider the topic in Conte and MacKay section 10.1, integer resonances. Consider a
single dipole error in the accelerator. We’ve discussed this before in two contexts, the linear
orbit distortion from a dipole error (which we saw diverged near integer tune), and the case
of the driven damped periodic oscillator where the driving is on resonance and there is no
damping. The book evaluates the equation of motion in the presence of a single Fourier
component of a periodic dipole error:

d2x

dθ2
+Q2

Hx = ε cos(mθ) (6.1)

All of that just to connect this (simple) equation to the complex periodic transverse accel-
erator motion that we’ve seen before!

As given in the book and extrapolated from the driven damped harmonic oscillator we saw
earlier, the solutions of this equation of motion can be written as the sum of the homogeneous
solution and a particular solution:

xhomogeneous = A cos(QHθ) +B sin(QHθ) (6.2)

xparticular =
ε

Q2
H −m2

[cos(mθ)− cos(QHθ)] (6.3)

The particular solution diverges where QH = m in resonant, Lorentzian-like fashion. A
single isolated error in the ring has Fourierr components at all integer m, and so we have
divergent resonances at all integer QH driven by this dipole error. If the error is systematic
in each of N periodic cells, then we have resonances at all QH = Nk where k is an integer.

6



Figure 3: The tune diagram showing resonance lines driven by a normal sextupole (n=2,
heavy lines) and normal decapole (n=4, dashed lines), from Conte/MacKay (left), and a
tune diagram with many higher order resonances also shown (right).

7 Comments on Coupling Resonances

Section 10.2.1 of Conte and MacKay treats linear coupling resonances, where the resonant
conditions are

QH +QV = m |QH −QV | = m (7.1)

Coupling behavior is different for sum resonances and difference resonances. Near a
difference resonance, energy is exchanged between the two planes and beating occurs at
the difference frequency |QH − QV |, but particle motion is still overall stable. However,
sum resonances add energy in phase to both planes, and tend to make the particle motion
unstable.

8 Comments on the Tune Diagram

In general, an nth order multipole drives (n+ 1)st order resonances of the form

lQx +mQy = k (8.1)

where (l+m) = n+1 and k, l,m, n are integers. These are lines in the tune plane of (Qx, Qy);
some of these resonance lines can be seen in Fig. 3. Note that there are sextupole resonances
at 3Qx = k; these are third-order resonances, and we’ll consider them in the next section.

9 Example: Sextupoles and Third-Integer Resonant Extraction

Let’s go back to action-angle coordinates and evaluate the effect of a sextupole perturbation
near a low-order Qx = 3m resonance line seen in the above figure. The two-dimensional
one-turn Hamiltonian now gains an additional term from the sextupole kick,

H = 2πQxJx + 2πQyJy + V3(x, y; s) (9.1)

where V3(x, y; s) = 1
6
S(s)(x3 − 3xy2) and S(s) = −B′′(s)/(Bρ). It must be noted that

nonlinear resonances can be driven to higher order than just first order, and that this Hamil-
tonian is only a first-order approximate Hamiltonian. Particles circulating in the accelerator
go through the sextupole magnets many times, after all!
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Using Eqn. (3.6) to convert to action-angle coordinates and expanding powers of the
cosine:

V3 = −
√

2

4
(βxJx)

1/2(βyJy)S(s)[2 cos θx + cos(θx + 2θy) + cos(θx − 2θy)] (9.2)

+

√
2

12
(βxJx)

3/2S(s)[cos(3θx) + 3 cos θx] .

The various θ terms in Eqn. (9.3) drive resonances including sum, difference, and parametric
resonances. This is awfully messy, but we can concentrate on one particular resonance,
cos(3θx) = k. The s-dependent terms are periodic, so we can expand V3 in Fourier harmonics
(see Lee’s book), and the full Hamiltonian becomes:

H = 2πQxJx + 2πQyJy +
∑
l

G3,0,lJ
3/2
x cos(3θx + ξ3,0,l) (9.3)

+o(cos(θx + 2θy)) + o(cos(θx − 2θy)) + . . .

We’ll concentrate on one particular resonance, the one-dimensional third order res-
onance produced by the cos 3θx term. Near a resonance at 3Qx = k, the Fourier sums of
other nonresonant terms tend to average out to zero. Here the Fourier amplitude G3,0,k and
the phase ξ3,0,k can be calculated for any sextupole distribution:

G3,0,ke
jξ3,0,k =

√
2

24π

∮
β3/2
x (s)S(s)ej[3θx(s)]ds (9.4)

We now have a simple (!!) one-dimensional one-turn Hamiltonian:

H = 2πQxJx +G3,0,kJ
3/2
x cos(3θx + ξ3,0,k) (9.5)

If we are near the 3Qx = k resonance, or δ ≡ Qx − k/3 << 1, then every third turn
(or iteration of this map) will come back to near its starting point. We want to examine
this small motion, so we can integrate the Hamiltonian again to produce not a one-turn
Hamiltonian, but a three-turn Hamiltonian:

H3 = 2πδJx + 3G3,0,kJ
3/2
x cos(3θx + ξ3,0,k) (9.6)

Now we can finally solve the Hamiltonian! One way to “solve” the Hamiltonian is by drawing
contours of constant H; another is to solve Hamilton’s equations directly.

Hamilton’s equations give

∆θx = 2πδ +
9

2
G3,0,kJ

1/2
x cos 3θx + ξ3,0,k, ∆Jx = 9G3,0,kJ

3/2
x sin 3θx + ξ3,0,k (9.7)

where the time step of the ∆ is three turns. Fixed points are located where ∆θx = ∆Jx = 0.
The latter immediately gives θxFP = m(π − ξ3,0,k)/3 for integer m; there are three unique
solutions in the range 0 < θxFP < 2π. ∆θx = 0 only gives real solutions for even m if
δ/G3,0,k < 0, or odd m if δ/G3,0,k > 0. These fixed points can be seen by inspection in Fig. 4.

In either case the action at the fixed point is given by:

JxFP =

(
4πδ

9G3,0,k

)2

(9.8)

which is positive definite. We can show that these fixed points are all unstable fixed points
by examining the equation of motion infinitesimally far away from the fixed point.

The Hamiltonian at the fixed point is

H(θxFP, JxFP) = 2πδ

(
4πδ

9G3,0,k

)
+ 3G3,0,k

(
4πδ

9G3,0,k

)
=

160

243

π3δ3

G2
3,0,k

(9.9)
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Figure 4: Two examples of Poincaré surfaces of section of the sextupole map from the URL
http://www.rhichome.bnl.gov/AP/Java/henon3.html. Note that existence of a separatrix;
particles outside the separatrix escape to infinity quickly, while particles inside the separatrix
are stable. One example is for δ < 0, while the other is for δ > 0. What happens when δ
crosses zero?

Setting the full Hamiltonian to this value produces an equation that is third order in Jx
1/2.

We can rescale to new coordinates to more easily find the shape of the separatrix:

X ≡

√
Jx
JxFP

cos θx P ≡ −

√
Jx
JxFP

sin θx (9.10)

then the equation for the separatrix orbit becomes

[2X − 1]

[
P − 1√

3
(X + 1)

] [
P +

1√
3

(X + 1)

]
= 0 (9.11)

These are three straight lines in this (X,P ) phase space. An example of the phase space of
this map, also known as the Henon map, is shown in Fig. 4, and you will explore this map
in the afternoon lab.

Third order resonances can be used to extract particles slowly from a synchrotron. This
is done by creating strong sextupole fields and slowly ramping the tune through the 3Qx

resonance; particles crossing the separatrix are quickly launched to large amplitudes, and
can be extracted through a septum magnet.

Nonlinearities don’t just drive phase-dependent terms, but they can act to produce de-
tuning, a change of tune with particle amplitude. For example, an additional term is created
to first order in octupole strength when driving the fourth-order one-dimensional resonance
4Q = l:

H = 2πδJx +
1

2
αJx

2 +G4,0.lJx
2 cos 4θx (9.12)

Here this detuning term α serves to stabilize and close the resonance islands. The tune is not
constant with amplitude Jx but varies as αJx. The difference in this behavior can be seen
in Fig. 4, which also shows various canonical transformations to analyze resonant behavior.
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Note that we have only investigated resonances to first order here. An entire framework
exists to analyze resonances to higher order, making use of Lie algebras, which we will
briefly cover tomorrow. Using this approach, one can show (for example) that sextupoles
drive detuning to second order in sextupole strength.

Figure 5: Isolated 5Qx resonance islands in various phase space coordinate systems. Arrows
indicate canonical transformations used to transform to action-angle coordinates, then into
the rotating frame of the resonance itself.

10 Example: The Beam-Beam Force and Resonances

Many modern accelerators are colliders, and beams of charged particles produce their own
electromagnetic fields. This means that the colliding beam effectively acts like an additional
lens and provides additional linear and nonlinear focusing. Usually beams have a transverse
Gaussian distribution and are equal size at the crossing point to maximize luminosity, so we
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will consider two Gaussian round beams with transverse charge distribution

ρ(r) =
Ne

2πσ2
exp

[
− r2

2σ2

]
(10.1)

where Ne is the charge per unit length and σ2 is the RMS beam width. The force acting on
a particle displaced by r from the center of the opposing bunch is

F =
γNe2(1 + β2)

4πW0r

(
1− exp

[
− r2

2σ2

])
r̂ (10.2)

where β = v/c and γ is the relativistic term.
Though this looks complicated, the exponential can be expanded in terms of r for small

r. The first nontrivial term scales with r; the next varies with r3, etc. In general the force
(or kick) only has odd components. The first-order term that scales with r looks like a linear
focusing term in both transverse directions, in other words, like a quadrupole. This produces
a linear beam-beam tune shift of

ξ = δν =
NBr0β

?

4πγσ2
(10.3)

where r0 = e2/(4πW0mc
2) is the classical particle radius, β? is the optics function at the

interaction point, and NB is the total number of particles in the opposing bunch.
The beam-beam kick has only odd terms, which means it derives from a potential with

only even power terms in r. However, the exponential expansion implies that it has all even
powers of r, so the beam-beam force is also a source for rich nonlinearities, and it drives all
even-order nonlinear resonances. This will be seen in the lab, where motion near the 3νx = l
beam-beam resonance produces not three, but six resonance islands.

11 Chaos: The Chirikov Resonance Overlap Criterion

A Famous Paper (tm) in 1979 by Boris Chirikov, “A Universal Instability Of Many-Dimensional
Oscillator Systems”, presented a criterion for the onsent of chaos in systems where multiple
resonances are present. This 90-page paper is not for the faint of heart, but the criterion is
easy to state: chaos or stochasticity is observed when the nonlinearity is strong enough that
resonance islands from separate resonances start to overlap.

Quantitatively, given resonance island action half-widths of ∆J1 and ∆J2, and a distance
between the resonances of δJ , the Chirikov overlap criterion is

δJ ≤ ∆J1 + ∆J2 (11.1)

In actuality, this slightly overstates the matter as motion near the separatrix has infinite
period and is therefore highly susceptible to any perturbation. Including this effect, as well
as the effects of smaller, higher-order resonances, Chirikov calculated a correction:

2

3
δJ ≤ ∆J1 + ∆J2 (11.2)

How does one calculate resonance widths? Recall that the Hamiltonian is a constant of
the motion on the separatrix. The unstable fixed points are known, so the Hamiltonian must
have the same value at the stable fixed points on the separatrix.
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Figure 6: The Chirikov overlap criterion for the development of bounded chaotic areas in
phase space. Here the horizontal axes are phase, and the vertical axes are action. At low
amplitudes or actions, particles have roughly constant action — particle motion is circular.
Resonances appear at higher amplitudes. The beam-beam tuneshift is increased from upper
left to lower right, showing the development of chains of resonance islands, their eventual
overlap, and ensuing development of areas of chaotic motion.
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