
The Ginzburg-Landau Theory 
 
A normal metal’s electrical conductivity can be pictured with an electron 
gas with some scattering off phonons, the quanta of lattice vibrations.  
Thermal energy is also carried by this gas, with the result that metals of 
higher electrical conductivity are also metals of higher thermal 
conductivity. 
 
As the metal cools, scattering of the electrons off phonons decreases, 
and both electrical and thermal conductivity increase.  But in some 
metals, there is1 a 2nd order phase transition (no latent heat) to a state 
where the thermal conductivity begins to decrease – and the electrical 
conductivity (at DC) becomes infinite.  Surface currents appear that 
completely cancel any applied magnetic fields inside the material (the 
Meissner effect); one would expect   
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In some cases, the Meissner effect is not absolute; in “Type II” 
superconductors, magnetic flux can penetrate into the bulk of the 
material, but does so in discrete quantum units of h/2e.  In “Type I” 
superconductors though, there is some critical field above which the 
entire sample goes normal-conducting. 
 
There is no way to explain this in terms of a classical gas of electrons, 
which actually isn’t that great a model in the first place.  The atomic scale 
of energies is volts, so the electrons are non-relativistic.  On the guess 
that you have some new quantum phenomena, write a complex valued 
function ψ and try to explain your new phenomena with it.  (Ginzburg and 
Landau, 1950).  In 1957, Bardeen, Cooper and Schrieffer will explain that 
ψ describes a state2 of many bosons of overlaping spatial extent which 
are formed by electron-phonon interactions creating pairs of electrons 
called Cooper pairs.  The full BCS theory is complicated and we can 
explain a lot with the non-microscopic GL theory.3 
 

                                            
1 At least, when there is no externally applied magnetic field. 
2 Not really a Bose-Einstein condensate though, as the BCS treatment 
allows for interactions of one fermion from a (loosely bound) pair with a 
fermion from another overlapping pair. 
3 For some high temperature superconductors, a tensor ψ is needed.  In 
some cases, the Cooper pairs might be spin-1 objects. 



From the drop in thermal conductivity, we guess that electrons are 
moving into this new state described with ψ, and from the age of 
Shröedinger and de Broglie, we know that |ψ|2 is the number density, n, 
for ψ.  The free energy must drop or no electrons go into this new state, 
so there is an energy term 
 

  

! 

F = d3 ! x " #$( )% 2. 
 
Where α is positive below TC and zero at or above TC.  But wait!  That 
would minimize to infinitely negative energy and infinitely large field.  So 
we add a spontaneous symmetry breaking term, 
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The parameters α and β are positive below TC, but α is assumed to vanish 
linearly as T → TC.  Units of α are J and β is J-m3.  This is the same sort of 
“Mexican Hat” potential that is used for the standard model Higgs and the 
equilibrium state. 
 
There is a kinetic energy 

! 

1
2m

p2  with 

! 

p2  the expectation value of p2, 
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where the expression on the right, sometimes written 
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for the plane wave case anyway, give or take a minus sign.  Of course, it 
is not clear what exactly m is.  We are assuming an isotropic medium by 
using a single scalar m though.  From the gauge invariant Dirac 
prescription we know to add the interaction of the magnetic field with the 
kinetic energy of the ψ, via   
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A , although it is not clear what exactly q is.  
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which does not however include the energy of either the external 
magnetic field   
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H EXT  or the magnetic field from the induced currents   
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B SURF .  

The   
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A  vector is the potential for the sum of these fields, but it only 

appears in the energy-of-interaction term.  Writing the free energy of the 
non-superconducting part of the metal as fNORM, the total energy is 
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To study the superconducting phenomena, we separate fNORM and the 
externally applied magnetic field energy from the system under study and 
work with a free energy density of 
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Superconductivity is –amazingly enough- a 2nd order phase transition; its 
appearance does not entail adding or removing heat.  Therefore, there is 
no change to the entropy dΣ = δQ / T.  Then the energy U is also the 
Helmholtz free energy F = U – T Σ.  Equilibrium is at4 the minimum of f, 
which is found using the Euler-Lagrange equations.  First use ψ as the 
field to be varied 
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and then also use   
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A  as the field to be varied 
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The extremum in the variation with ψ gives 
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whence 

                                            
4 Tilley & Tilley, “Superfluidity and Superconductivity” (1990), and Kittel 
“Introduction to Solid State Physics”, (1986) argue that one should 
actually minimize the Gibbs free energy,   
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the externally applied magnetic field H is akin to p and one is minimizing 
under conditions of fixed H and T.  But actually, it does not usually make 
much difference. 
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where the Coulomb gauge,   
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A = 0 has been taken.  This is the 1st 

Ginzburg-Landau equation; it is a special case of the Schröedinger 
equation.  To get the 2nd Ginzburg-Landau equation, find the extremum 
in the variation with Ak.  The first step is to drop the non-  
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A  dependent 

terms from the free energy density and to re-cast the magnetic field 
contributions in terms of   
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The energy of the external magnetic field does not appear in any 
derivatives.  Then 
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is straight forward; a little more tedious but still uncomplicated is  
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the 2nd Ginzburg-Landau equation. 
 
From these 2 equations, we can derive much of the phenomenology of 
superconductors. 
 
1).  Let us start with the 2nd equation.  Since the particle flow is the 
electric current divided by the particle charge, this tells us the equation of 
particle flux at least for the   
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A = 0 case: 
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So although in the Ginzburg-Landau theory we don’t in know what ψ 
really represents or what charge to assign to it, we can say how much of 
it is flowing around. 
 
The most general form for ψ, not allowing for any time dependencies is 
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! x ( ) = n ! x ( ) exp iS ! x ( )( ) which just reflects that |ψ|2 = n is, like the phase S, a 

function of location in the material.  With this form in the 2nd Ginzburg-
Landau equation,  
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showing that superconducting currents correspond to either a vector 
potential or a phase advance of the wavefunction. 
 
2).  Take the curl of both sides of the 2nd equation to get 
 

  

! 

"q2

m
# $ n

! 
A [ ] = # $

! 
J , 

 
where I’ve used |ψ|2 = n, the number density.  In the center of a uniform 
material, n will be constant, so 
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This is one of the London equations, proposed by Fritz and Heinz London 
in 1935. 
 
3).  Using the Maxwell equations with the London equation above to 
determine   
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where λ is the “London penetration depth”, a parameter which describes 
how far a magnetic field can penetrate into a superconductor.  Imagine a 
semi-infinite superconductor with |ψ|2 = n a constant positive number 
whenever x > 0, and let the x ≤ 0 half of space be filled with a constant 
magnetic field   

! 

! 
B 0  that has of course no x component.  Later we will see 

than an infinitely thin boundary to |ψ|2 is not actually possible, but 
neglect that effect for now.  Then there will be some exponential decay of 
the field inside the superconductor with characteristic scale λ, 
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B 0 exp("x /#).  From Ampere’s law, there will be surface 

supercurrents that also go as exp(-x/λ). 
 
4).  A finite span is required for the wave function can go from zero to its 
full value. Again, let the superconductor fill the semi-infinite volume x > 0, 
and let the x ≤ 0 half of space be filled with a region of normal or no 
conduction, where ψ = 0.  Allow that there might be a non-zero external 
field and call its direction the y direction, but let us just work with a 
planar boundary – nothing physical will have non-zero y or z derivatives.  

Then 
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A .  In fact, with some simple sketches of loops, we can guess 

that an exponentially decaying   
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that is zero at x = 0 and rises to some constant real number at large 
positive x.  Such a solution is  
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where   

! 

" = ! 2m#  is the coherence length. 
 
5).  Flux quanta are a result of ψ being a complex number.  For a closed 
loop that remains more than a few λL from any normally-conducting 
regions,   
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In order for ψ to be single valued, the integral of the phase advance in 
such a closed loop has to be an integer times 2π, so the magnetic flux Φ 
is quantized in units of h/q.  But be clear – we have not proven that any 
flux can enter at all.  We have only shown that if it does enter it will do so 
in quantal units.  The experimental fact that magnetic flux can penetrate 
into a Type II superconductor in units of h/2e tells us what value to assign 



to q – it is the amount that corresponds to the dissociation of a single 
Cooper pair! 
 
6).  Critical field phenomena are a result of the combination of the 
expression for free energy and the independence of λL and ξ.  Consider 
again the free energy density  
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To start with, let us neglect the boundary regions where there is non-
zero current flow and   

! 

! 
A  and just consider the bulk of the 

superconductor.  In that region, where   
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J  are zero, we can drop the 

3rd term and just consider 
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Below TC, the first two terms together are negative, or there would be no 
superconductivity at all.  Superconductivity begins to collapse when the 
positive term from the magnetic field that creates the Meissner effect 
gets large enough to make f positive.  Past that point, collapse of both ψ 
and   

! 

! 
B SURF  simultaneously will reduce the free energy and 

superconductivity will disappear. 
 
To write the critical field level in terms of α and β, re-derive the 1st 
Ginzburg-Landau (Schröedinger) equation from the above equation.  It is 
just 
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.  Since the field produced by the Meissner effect exactly 

cancells the externally applied field, this is also the level of externally 
applied critical field.  I believe that this effect limits the maximum current 
that can be carried through the superconductor; at some point the 
magnetic field outside the superconductor that is created by the 
supercurrent exceeds Hc. 
 
7).  The thermodynamics of flux penetration –that is, what happens near 
the edges of the superconductor at high applied fields- provides an 
understanding of how Type I and Type II materials arise. 
 
Recall that the London penetration depth λ controls how far a magnetic 
field can penetrate into a superconducting region from a normally 
conducting one.  For larger values of λ, this   
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positive contribution to the free energy.  The coherence length ξ controls 
how quickly ψ gets up to its central-material value as one moves into a 
superconducting region from a normally conducting region; a larger ξ 
corresponds to a lower density of superconducting electrons just inside a 
normal/superconducting boundary and hence a smaller negative energy 
contribution from 

! 

"#$
2

+ %2 $
4 . 

 
So for large ξ relative to λ, a boundary will have a net positive energy in 
the region where the ψ is not large and there is some penetrating 
magnetic flux.  In such a case it is never thermodynamically 
advantageous to increase the size of the normal/superconducting 
boundary, and flux quanta never enter the material.  That is a Type I 
superconductor. 
 
On the other hand, if ξ is small relative to λ, there can be a layer near the 
boundary where the free energy is negative.  Then, if the applied field is 

close enough to 
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" µ0
# , the drop in free energy created by introducing a 

flux quantum is greater than the drop in free energy caused by having 
the volume of the flux quantum in a superconducting state.  At such a 
point, (HEXT = Hc1) magnetic flux enters the Type II superconductor.  It will 
continue to accept flux until even an infinitesimally small ψ can not be 

sustained (HEXT = Hc2).  I will skip the details – turns out 
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#
Hc .  

Type II superconductors will have their flux vortices move around when 
there is an electrical current; this dissipates energy and one technique is 
to create pinning points where flux vortices will for some reason be 
trapped.  Then one can continue to superconduct fairly large amounts of 
current through the material. 
 


