
Handout: Handy Computer Tools

T. Satogata: June 2011 USPAS Accelerator Physics

June 13, 2011

This is a description of a few computational tools that I’ve found to be very useful as a
working physicist. This handout is more to note that these tools exist, and to indicate how
they might be used in class. It is not meant to replace full documentation for any of these
tools, nor is it meant to imply that any of these tools are any better or worse than what you
might already be using!

1 Mathematica

Mathematica is the industry standard among symbolic manipulation codes, and it also
does arbitrary-precision calculations. If you are fortunate enough to have a license (usually
through a lab or student/educational discount), you probably already know how to use it.
Matrices are entered with curly brackets, e.g. {{1,L},{0,1}}, and matrix multiplication
and vector dot products are performed using a period, e.g. “a.b”. Functions are capitalized
and use square brackets to surround arguments, and Simplify[] is used to aggressively
simplify algebraic expressions. One common stumbling block for a beginner is that the trace
function is Tr[]; Trace[] is used to trace variables, not to calculate matrix traces.

Figure 1: A simple Mathematica FODO cell calculation.

2 Wolfram Alpha

The Wolfram Alpha “Computational Knowledge Engine” includes an interface to some
simple but powerful and convenient Mathematica tools, including numerical and symbolic
analysis:

http : //www.wolframalpha.com

Its big drawback is that you cannot define variables, but it has two big advantages: it’s
free, and it’s in a browser so it’s portable. It’s extremely useful for one-off calculations,
particularly when you can edit your entry in a text editor and then cut and paste it into the
Alpha query window. See Fig. (2) for a simple FODO cell matrix calculation in Alpha.

1



Figure 2: A simple FODO cell calculation, and a calculation of required magnetic field to bend a q = e,
p =3 GeV/c particle through a bending radius of ρ =10 m in Wolfram Alpha.

Both Google and Alpha also serve as excellent symbolic calculators and unit converters.
For example, type

3 GeV/c / (1.602e− 19 Coulombs ∗ 10m) in Tesla (1)

to calculate that it takes a 1 T magnet to bend a q = e, p =3 GeV/c particle with a bending
radius of ρ =10 m. Also see Fig. (2). These nice online unit-friendly calculators will often
get confused about certain symbols. For example, they get confused between e as the base of
natural logarithms vs the charge of the electron. In the above example I just used a number
I know, but Alpha also will recognize it if you type q e.

Alpha also gives some comparisons to magnetic induction and polarization. Such a magnet
would be comfortably under saturation if made out of good iron, but would be horribly
saturated and probably infeasible if made out of nickle.

3 yacas

Recall that one of Wolfram Alpha’s drawbacks is that it only evaluates single statements;
it’s not really a full free interpreter. Fortunately there are a few free symbolic algebra
interpreters out there of varying complexity. Perhaps the most lightweight is yacas, yet
another computer algebra system, available with source code from

http : //yacas.sourceforge.net

yacas is no longer being maintained, but it is still useful. You can download the source
code and compile it fairly easily for a simple command-line interpreter. There is also a
console view (beneath the “My Yacas” tab on the above website) that can be used from a
web browser connected to the internet. The syntax is close to Mathematica, but := is used
for variable assignment, functions delineate arguments with parentheses, and * is used for
matrix multiplication.

Yacas also does not simplify algebraic expressions by default, so you will find yourself using
Simplify() in almost every evaluation. Yacas also has a hard time automatically reducing
polynomial fractions, as seen in Fig. (3). Nonetheless, it is useful for simple symbolic and

2



algebraic calculations, and it can also perform numerical evaluation. However, yacas does
not integrate with common plotting programs such as gnuplot.

Figure 3: A simple FODO cell calculation in the web interface (left) and terminal interface (right) to yacas.
The terminal interface example also shows numerical evaluation.

4 maxima

maxima is much more heavyweight (the user’s guide is nearly 1000 pages long), but is
also very well-supported and free. It is derived from Macsyma, a symbolic algebra system
developed by MIT and DOE from the late 1960’s to 2000. It is available with source code
from

http : //maxima.sourceforge.net

maxima’s symbolic interpreter is implemented in LISP, no surprise since it originated at
MIT. The syntax is thus a bit more arcane to those who are familiar with the Mathematica
expression style; it will be more familiar to those who program elisp in emacs. For example,
assignments are made with :, not with an equals sign as in Mathematica or := as in yacas.
Matrices are declared with the matrix() function. Instead of Simplify(), you should gener-
ally use factor(expand()) around most algebraic expressions to simplify them as much as
possible. All statements must end with a semicolon; you can get very confused if you forget
it as the interpreter will look like it’s hung waiting for your input. An example interpreter
session is shown in Fig. (4).

maxima also has the advantage of integrating well with gnuplot, so it can be used to plot
fairly complex functions (see pp. 117 and onward of the manual). There are also many nice
GUI programs available, such as wxmaxima; these give a much nicer display than maxima
from the command line.

3



Figure 4: A simple FODO cell calculation in the terminal interface for maxima.

5 Matlab

You may also be familiar with Matlab, a numerical analysis program that is widely used
particularly for signal processing and excellent numerical matrix analysis tools. It excels at
analysis of large sparse matrices. Matlab does not perform any symbolic algebra. Matlab can
be even more costly than Mathematica, but it is particularly useful for design and modeling
of time-varying systems with a powerful graphical environment called Simulink.

The AT accelerator toolbox, developed at SLAC and available at

http : //ssrl.slac.stanford.edu/at

is particularly popular for accelerator modeling and high-level controls at many light sources
around the world. It is implemented fully within Matlab, and requires Matlab licenses to
run.

6 Octave

Since Matlab can be expensive (several thousands of dollars for a single license), there is a
free program called Octave that replicates much of the numerical and matrix analysis with
a very similar syntax. Octave is part of the GNU project but is not directly developed or
supported by the FSF (Free Software Foundation). Octave is installed on the Linux systems
in our computer labs, and many of the programs in this class’s computer labs use octave as an
underlying fast matrix calculator. Octave does not have built-in graphics like Matlab does,

4



so Matlab user interface code (including AT) is not trivially portable to Octave. However,
Octave can produce many plots that Matlab can by invoking gnuplot as a plotting tool.

Matlab and Octave have a syntax much closer to C. Assignment is done with = and matrix
multiplication is done with *. Matrices are surrounded with square brackets, with commas
separating elements and semicolons separating rows. A semicolon at the end of a statement
also suppresses output. A simple numerical FODO cell example, including calculation of
eigenvalues and phase advance/cell, is shown in Fig. (5).

Figure 5: A simple numerical FODO cell calculation in Octave.

5


