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7.4 Longitudinal coordinates and synchrobetarton coupling

For a charged particle of charge q in an external electromagnetic field, we

may write the relativistic Hamiltonian as

H(x, Px, y, Py, z, Pz; t) = U =

√

(~P − ~A)2 +m2c4 + qΦ, (7.58)

with vector potential ~A, and electric potential Φ, canonical momentum
~P = ~p + q ~A, and total energy U . Here the kinetic momentum ~p = γ~βmc.

In the usual cylindrical coordinates of accelerator physics with radius of

curvature ρ, the Hamiltonian may be written as

H(x, Px, y, Py, s, Ps; t) = U

= c

√

(Px − qAx)2 + (Py − qAy)2 +

(

Ps − qAs

1 + x/ρ

)2

+m2c2 + qΦ. (7.59)

Recalling that a canonical transformation from variables (~q, ~p) to variables

( ~Q, ~P ) preserves the Poincaré-Cartan integral invariant

~p · d~q −H dt = ~P · d ~Q−K dt, (7.60)

we can interchange one canonical pair (qj , pj) with the time-energy pair

(t,−H) by writing the invariant as




∑

i6=j

pidqi + (−H)dt



 − (−pj)dqj . (7.61)

This transformation gives the new Hamiltonian

H(x, Px, y, Py, t,−U ; s) = −Ps

= −qAs −
(

1 +
x

ρ

)

×

√

(

U − qΦ

c

)2

− (mc)2 − (Px − qAx)2 − (Py − qAy)2. (7.62)

If there are no electrostatic fields then we may write Φ = 0; the fields in rf

cavities may be obtained from the time derivative of ~A. Ignoring solenoids

for now, with only transverse magnetic guide fields and the longitudinal

electric fields of the cavities may be described by As, so we may take

Ax = 0, Ay = 0, and Φ = 0. (7.63)
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To model dipoles, quadrupoles and cavities a vector potential of the form

qAs = q

(

1 +
x

ρ

)

( ~A · ŝ)

= −psy
ρ

x− psyK

2
(x2 − y2) + . . .

+
qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos(ωrft+ φ0) (7.64)

is sufficient. Here the circumference is L, and the magnetic guide field

parameter is

K =
1

ρ2
+

q

psy

(

∂By

∂x

)

0

, (7.65)

and psy is the momentum of the synchronous design particle. The effective

rf phase as the synchronous particle passes the cavities is φ0, to give a net

energy gain per turn of [qV cos(φ0)]. For simplicity in Eq. (7.64) the effect

of all rf cavities has been lumped at the location s = 0 in the ring.

The time coordinate may be broken up into the time for the synchronous

particle to arrive at the location s plus a deviation ∆t for the particular

particle’s arrival time:

t = tsy(s) + ∆t(s) =
2πh

ωrfL
s+∆t =

s

βc
+∆t. (7.66)

If the beam is held at constant energy, then we may make a canonical

transformation of the time coordinate ∆t to rf phase ϕ given by

ϕ = ωrf∆t. (7.67)

If acceleration is assumed to be adiabatically slow, so that ωrf changes

very slowly, and the magnetic guide fields track the momentum of the syn-

chronous particle, keeping the synchronous particle on a fixed trajectory,

we can allow for an adiabatic energy ramp according to

Usy = U0 +
qV sinφ0

L
s, (7.68)

where the energy gain per turn [qV sinφ0] is much less than the total energy

Us. In this case it might not unreasonable to use ϕ as the longitudinal

coordinate, so long as we are prepared to allow for adiabatic damping of

the phase space areas. To convert the time coordinate into an rf phase angle
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relative to the phase of the synchronous particle, we can use the generating

function

F2(x, px, t,W ; s) =xpx +

[

ωrfW −
(

U0 +
qV sinφ0

L
s

)]

t

− 2πh

L
Ws+

qV πh sinφ0

ωrfL2
s2, (7.69)

to find a new canonical momentum W corresponding to the phase coordi-

nate. This is what was used to arrive at Eq. (CM: 7.61)1

Before proceeding down this path it will behoove us to examine the

effect of ramping the energy. The deviation in energy of another particle

of energy U from the synchronous particle may be defined as

∆U = U − Usy. (7.70)

For the synchronous particle the phase of the rf cavity should be

φsy = φ0 +

∫ tsy

0

ωrf dt

= φ0 +

∫ tsy

0

2πhβc

L
dtsy (7.71)

With changing energy and the velocity dependence of ωrf , calculation of this

integral becomes a problem and ϕ does not appear to be such an attractive

candidate for a canonical coordinate. This is why Chris Iselin chose to take

ζ = −c∆t as the longitudinal coordinate variable in the MAD program[14].

Of course there are other parameters which are not necessarily constants

in real accelerators. It is quite common to vary the radial position of the

closed orbit, as well as the synchronous phase of the rf – particularly during

the phase jump at transition crossing. Pulsed quadrupoles are frequently

used to cause a rapid change in the transition energy at transition during

acceleration.

If we consider a ramp with a constant increase of energy per turn

Usy = U0 +Rs with

R =
qV

L
sinφ0 (7.72)

then the time evolution as a function of path length of the synchronous

1The formalism of Suzuki[35] was followed in writing CM: § 7.6.
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particles is given by

tsy(s) =

∫ s

0

ds

βc

=

∫ s

0

[

1−
(

mc2

U0 +Rs′

)2
]1/2

ds′

=
mc2

R

∫
U0+Rs

mc2

U0

mc2

√

1− ξ−2 dξ, s′ =
ξmc2 − U0

R

= −mc2

R

∫ mc2

U0+Rs

mc2

U0

√

1− η2
dη

η2
, ξ =

1

η

=
mc2

R

∫ cos−1
(

mc2

U0+Rs

)

cos−1

(

mc2

U0

)

tan2 θ dθ, η = cos θ

=
mc2

R
[tan θ − θ]

∣

∣

∣

∣

∣

cos−1
(

mc2

U0+Rs

)

cos−1
(

mc2

U0

)

=
mc2

2R





U0 +Rs

mc2

√

1−
(

mc2

U0 +Rs

)2

− U0

mc2

√

1−
(

mc2

U0

)2

+cos−1

(

mc2

U0 +Rs

)

− cos−1

(

mc2

U0

)]

=
mc2

2R

[

βγ − β0γ0 + cos−1

(

1

γ

)

− cos−1

(

1

γ0

)]

(7.73)

Provided that the ramping is sufficiently slow, then acceleration may be

treated adiabatically.

At least in the adiabatic case, then we can find the new canonical coor-

dinate and Hamiltonian from Eq. (7.69):

−U =
∂F2

∂t
= ωrfW −

(

U0 +
qV sinφ0

L
s

)

, (7.74)

ϕ =
∂F2

∂W
= ωrft−

2πh

L
s, (7.75)
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with the derivative of the generating function:

∂F2

∂s
= −qV sinφ0

L
t− 2πh

L
s+

2πhqV sinφ0

ωrfL2
s

= −qV sinφ0

L

[

2πh

ωrfL
s+∆t

]

− 2πh

L
s+

2πhqV sinφ0

ωrfL2
s

= −qV sinφ0

L

ϕ

ωrf
− 2πh

L
s

= −qV sinφ0

L

ϕ

ωrf
− s

Ż
∗
rf

, (7.76)

where we have written Ż∗rf = L/2πh as a constant effective rf wavelength

corrected for the velocity.2 Ignoring the vertical motion, the new Hamilto-

nian is

H1(x, px, ϕ,W ; s) = H +
∂F2

∂s

=
psy
ρ

x+
psyK

2
x2 +

qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

Ż
∗
rf

)

−
(

1 +
x

ρ

)[

(Usy − ωrfW )2 −m2c4

c2
− p2x

]1/2

− qV sinφ0

L

ϕ

ωrf
− s

Ż
∗
rf

=
psy
ρ

x+
psyK

2
x2 +

qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

Ż
∗
rf

)

−
(

1 +
x

ρ

)[

p2sy −
2ωrfUsy

c2
W +

ωrf
2

c2
W 2 − p2x

]1/2

− qV sinφ0

L

ϕ

ωrf
− s

Ż
∗
rf

. (7.77)

2The true rf wavelength is actually Żrf = L/2πhβ and is a function of the momentum
of the particle, whereas Ż

∗

rf is a constant depending only on the design circumference
and harmonic number.
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With a few approximations and a bit more algebra this becomes

H1

≃ psy
ρ

x+
psyK

2
x2 +

qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

Ż
∗
rf

)

− psy

(

1 +
x

ρ

)

[

1− ωrfUsy

p2syc
2

W +

(

ωrf
2

2p2syc
2
− 1

8

4U2
syωrf

2

p4syc
4

)

W 2 − 1

2

p2x
p2sy

]

− qV sinφ0

L

ϕ

ωrf
− s

Ż
∗
rf

≃ psy







−1 +
K

2
x2 +

qV

ωrfpsy

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

Ż
∗
rf

)

+

(

1 +
x

ρ

)[

ωrfUsy

p2syc
2

W +
m2ωrf

2

2p4sy
W 2 +

1

2

p2x
p2sy

]

− qV sinφ0

Lpsy

ϕ

ωrf
− s

Ż
∗
rf

}

≃ psy







−1 +
K

2
x2 +

qV

ωrfpsy

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

Ż
∗
rf

)

+

(

1 +
x

ρ

)

[

1

Ż
∗
rf

W

psy
+

1

γ2Ż
∗
rf
2

(

W

psy

)2

+
1

2

(

px
psy

)2
]

− qV sinφ0

Lpsy

ϕ

ωrf
− s

Ż
∗
rf







(7.78)

This is essentially the same as Eq. (CM: 7.61) but with the longitudinal

variables written as

ϕ = ωrf ∆t, and W = −∆U

ωrf
, (7.79)

and where L is the circumference, and for magnets with transverse fields

and no horizontal-vertical coupling

K =
1

ρ2
+

q

p

(

∂By

∂x

)

0

. (7.80)

If we want to calculate matrices for the basic magnetic elements, i. e.,

normal quads and dipoles, then the summation drops out, since δ(s−jL) =

0 and V = 0 away from the rf cavities. Then keeping only terms to second
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order in the canonical variables we have

H1 ≃ −ps +
psK

2
x2 +

p2x
2ps

+

(

Usyωrf

psyc2
− 2πh

L

)

W +
m2ωrf

2

2p3sy
W 2 +

Usyωrf

ρpsyc2
Wx

≃ −psy +
psyK

2
x2 +

p2x
2psy

+
m2ωrf

2

2p3sy
W 2 +

Usyωrf

ρpsyc2
Wx, (7.81)

since the two terms in the coefficient of W cancel. We may rescale the

Hamiltonian by 1/psy getting

H1.5 ≃ −1 +
K

2
x2 +

1

2
wx

2 +
1

γ2Ż
∗
rf
2w

2
φ +

1

ρŻ∗rf
wφx, (7.82)

with the new canonical momenta

wx =
px
psy

, and (7.83)

wφ =
W

psy
= − ∆U

ωrfpsy
= −

βγmc3

γmc2

2πhβc
L

∆p

psy

= −Ż∗rf
∆p

psy
. (7.84)

In this case with ϕ and wφ as canonically conjugate the longitudinal emit-

tance would have units of length (meters), just like the horizontal and verti-

cal planes. (Of course this should be obvious since then all three emittances

come from the common Hamiltonian H1.5.) In the paraxial approximation,

we obviously have wx ≃ x′.

7.4.1 Variations of the longitudinal canonical variables

There are a several different combinations for the longintudinal canonical

variables, for example:
(

z,
∆p

p0

)

, (7.85)

(

− c∆t,
∆u

p0c

)

, (7.86)

(

− (t− t0)v0γ0
γ0 + 1

,
K −K0

K0

)

, (7.87)
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(φ, W ), (7.88)

(φ, wφ), (7.89)

The two pairs in Eqs. (7.88 and 7.84) were explained in the previous chapter

Eqs. (7.79 and 7.84). Differentiating the equation

U2 = p2c2 +m2c4, (7.90)

leads to the relation

du = βc dp, (7.91)

or on converting to fractional deviations

dp

p0
=

1

β

du

p0c
=

1

β2

du

U0
. (7.92)

Conversion from the pair in Eq. (7.85) to the pair in Eq. (7.86) used in the

MAD3,4 program may be accomplished by the simple transformation
(

z
∆p
p
0

)

=

(

−β0c(t− t0)
∆p
p
0

)

=

(

−β0c∆t)

β−1
0

∆u
p
0
c

)

=

(

β0 0

0 β−1
0

)

(

−c∆t
∆u
p
0
c

)

(7.93)

The usual definition of dispersion defined as the particular solution to the

inhomogeneous horizontal Hill’s equation in Eq. (CM: 5.77) must be mod-

ified by a factor of β0 to agree with the value calculated by MAD.

The pair in Eq. (7.87) are used in the program COSY Infinity5 which

can be obtained as follows. If we start from the good canonical pair:

(∆t,−∆U) (7.94)

and rescale as usual by dividing by p0, we may write

∆t

(

−∆U

p0

)

=
c∆t∆K

p0c
, (7.95)

where ∆K = ∆U is the change in kinetic energy K = (γ − 1)mc2. Writing

p0c in terms of the kinetic energy, we have

p0c = mc2γ0β0 = mc2(γ0 − 1)

√

γ0 + 1

γ0 − 1
= K0

√

γ0 + 1

γ0 − 1

=
K0(γ0 + 1)
√

γ2
0 − 1

=
K0(γ0 + 1)

γ0β0
. (7.96)

Substituting this into Eq. (7.95) we find

∆t

(

−∆U

p0

)

= −∆t γ0v0
γ0 + 1

∆K

K0
, (7.97)

and we see that Eq. (7.87) must also be a good canonical pair that preserves

the area elements of longitudinal phase space.
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7.4.2 Transport matrices for a few elements

Using the Lie algebraic method demonstrated in CM § 3.7, matrices for a

drift, quadrupole, and sector bend may obtained:

Mdrift =











1 l 0 0

0 1 0 0

0 0 1 l
γ2Ż

∗

rf
2

0 0 0 1











, (7.98)

Mquad =











cos(
√
kl) 1√

k
sin(

√
kl) 0 0

−
√
k sin(

√
kl) cos(

√
kl) 0 0

0 0 1 l
γ2Ż

∗

rf
2

0 0 0 1











, (7.99)

Msbend =
















cos
[√

1− nθ
] ρ sin[

√
1−nθ]√

1−n
0

ρ(1−cos[
√
1−nθ])

(1−n)Ż∗rf√
1−n sin[

√
1−nθ]

ρ cos
[√

1− nθ
]

0
sin[

√
1−nθ]√

1−nŻ∗rf

− sin[
√
1−nθ]√

1−nŻ∗rf
− ρ(1−cos[

√
1−nθ])

(1−n)Ż∗rf
1 ρ

Ż
∗

rf
2

{

θ
γ2 −

√
1−nθ−sin[

√
1−nθ]

(1−n)−3/2

}

0 0 0 1

















,

(7.100)

where we have used H1.5 with the canonical pairs (x,wx) and (φ,wφ) for

the radial and longitudinal canonical variables.


