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Physics 696 
Topics in Advanced Accelerator Design I 

Monday, September 10 2012 
 

E&M: Plane Waves, Waveguides, Boundary Absorption 

Todd Satogata 
Jefferson Lab and Old Dominion University 

 
Happy Birthday to Arthur Compton (1927 Nobel), Joey Votto, Colin Firth, and the LHC! 

Happy Swap Ideas Day, International Make-Up Day, and Cheap Advice Day! 
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Electric charge density 

Electric current density 

Maxwell’s Equations 
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Constitutive Relations 

�D = ε �E = εrε0 �E ε0 = 8.85× 10−12 C

N ·m2

�D : Electric displacement field

�E : Electric field

ε : Permittivity

�B = µ �H = µrµ0
�H µ0 = 4π × 10−7 N · s2

C2

�B : Magnetic field

�H : Magnetizing field

ε : Permeability

ε0µ0 =
1

c2
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Source-Free Maxwell Equations 

§  When there are no sources (                    ) then 
Maxwell’s equations become much more symmetric: 

�J = 0, ρ = 0

�∇ · �D = 0

�∇× �E = −∂ �B

∂t
�∇ · �B = 0

�∇× �H =
∂ �D

∂t

�D = � �E

�H =
1

µ

�B
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Harmonic Dependence of Fields 

§  The linearity of the first order time derivatives 
suggests that we can assume a harmonic time 
dependence of our magnetic and electric fields 

 This gives the spatial Maxwell Equations: 

�B(�x, t) = �B0(�x) e
−iωt

�E(�x, t) = �E0(�x) e
−iωt

�∇ · �B = 0 �∇× �E − iω �B = 0

�∇ · �E = 0 �∇× �B + iωµ� �E = 0
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Plane Waves 

§  Taking the curl of each curl equation and using the 
identity 

then gives us two identical spatial wave equations with 
straightforward solutions: 
 
 
 
 
 

 These are plane waves traveling in direction  

�∇× (�∇× �E) = �∇(�∇ · �E)−∇2 �E = −∇2 �E

[∇2 + µ�ω2] �E = 0 ⇒ �E(�x, t) = �E0 e
i�k·�x−iωt

[∇2 + µ�ω2] �B = 0 ⇒ �B(�x, t) = �B0 e
i�k·�x−iωt

�k
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Plane Wave Properties 

The source-free divergence equations imply 

     so the fields are both transverse to the direction 
 
Faraday’s law also implies that both fields are spatially 
transverse to each other 
 
 

 Here n is the index of refraction. 

[∇2 + µ�ω2] �E = 0 ⇒ �E(�x, t) = �E0 e
i�k·�x−iωt

[∇2 + µ�ω2] �B = 0 ⇒ �B(�x, t) = �B0 e
i�k·�x−iωt

�k · �E0 = �k · �B0 = 0
�k

�B0 =
�k × �E0

ω
=

nn̂× �E0

c
n̂ ≡

�k

k
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Standing Waves 

Note that Maxwell’s equations are linear, so any linear 
combination of magnetic/electric fields is also a solution. 
Thus a standing wave solution is also acceptable, 
where there are two plane waves moving in opposite 
directions: 

[∇2 + µ�ω2] �E = 0 ⇒ �E(�x, t) = �E0 e
i�k·�x−iωt

[∇2 + µ�ω2] �B = 0 ⇒ �B(�x, t) = �B0 e
i�k·�x−iωt

�E(�x, t) = �E0

�
ei
�k·�x−iωt + e−i�k·�x−iωt

�

�B(�x, t) = �B0

�
ei
�k·�x−iωt + e−i�k·�x−iωt

�
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Polarization 

§  As long as the     and     fields are transverse, they 
can still have different transverse components. 
§  So our description of these fields is also incomplete 

until we specify the transverse coordinates at all 
locations in space 

§  This is equivalent to an uncertainty in phase of rotation 
of     and     around the wave vector    . 

§  The identification of this transverse field coordinate 
basis defines the polarization of the field.   

[∇2 + µ�ω2] �E = 0 ⇒ �E(�x, t) = �E0 e
i�k·�x−iωt

[∇2 + µ�ω2] �B = 0 ⇒ �B(�x, t) = �B0 e
i�k·�x−iωt

�E �B

�B�E �k
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Linear Polarization 

§  So, for example, if     and     transverse directions are 
constant and do not change through the plane wave, 
the wave is said to be linearly polarized. 

[∇2 + µ�ω2] �E = 0 ⇒ �E(�x, t) = �E0 e
i�k·�x−iωt

[∇2 + µ�ω2] �B = 0 ⇒ �B(�x, t) = �B0 e
i�k·�x−iωt

�E �B

Fields each stay in one plane 

E/B field oscillations 
are IN phase 
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Circular Polarization 

§  If     and     transverse directions vary with time, they can 
appear as two plane waves traveling out of phase. This 
phase difference is 90 degrees for circular polarization.  

�E �B

Two equal-amplitude linearly 
polarized plane waves 
90 degrees out of phase 

�E(�x, t) = �E0

�
ei
�k·�x−iωt + ei

�k·�x−iωt+π/2
�

�B(�x, t) = �B0

�
ei
�k·�x−iωt + ei

�k·�x−iωt+π/2
�
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Back to Maxwell, Now in Accelerators 

§  Not all space is source-free 
§  We’ll have to deal with boundary conditions 
§  We’ll even have to deal with complicated (linear) 

combinations of our plane waves in source-free space 

§  Accelerators have privileged directions 
§  E.g. the design momentum direction of the beam 
§  This is not always the same as our k direction! 
§  So let’s break down Maxwell’s equations again, now 

into transverse and longitudinal (z) components 
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Transverse Separation of Coordinates 
§  Here    labels the direction along the beam, and t 

labels transverse coordinates perpendicular to 
ẑ

ẑ
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Transverse Separation of Coordinates II 

§  We can even write down the transverse fields 
completely in terms of the longitudinal fields 

Notice how beautifully symmetric these equations are. 
This is a helpful decomposition of plane wave solutions to 
Maxwell’s equations into one longitudinal direction and 
two transverse directions. 
 

�Et =
i

µεω2 − k2

�
k�∇tEz − ωẑ × �∇tBz

�

�Bt =
i

µεω2 − k2

�
k�∇tBz − µεωẑ × �∇tEz

�
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Boundary Conditions: TM and TE Modes 

§  We can come up with some boundary conditions for a 
couple of simple cases where either electric (TE) or 
magnetic (TM) fields are completely transverse to  

�Et =
i

µεω2 − k2

�
k�∇tEz − ωẑ × �∇tBz

�

�Bt =
i

µεω2 − k2

�
k�∇tBz − µεωẑ × �∇tEz

�

ẑ
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Impedance Z 

Bz = 0

Ez = 0

Waveguides 

§  Consider the relationship between the transverse 
field components 
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Waveguides 

§  Plane waves carry electromagnetic energy in the    
direction and are periodic in all three spatial dimensions 
§  We can use that spatial periodicity in transverse boundary 

conditions, such as at a conductor wall. 
§  (Near-)perfect conductors allow us to 
    match transverse boundary conditions 
 
This gives a plane wave propogating 
longitudinally in a finite transverse volume 
 

[∇2 + µ�ω2] �E = 0 ⇒ �E(�x, t) = �E0 e
i�k·�x−iωt

[∇2 + µ�ω2] �B = 0 ⇒ �B(�x, t) = �B0 e
i�k·�x−iωt

�k
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Transverse Fields as an Eigenvalue Problem 

γ ≡ (µεω2 − k2)

ψ ≡ Ez

γ ≡ (µεω2 − k2)

ψ ≡ Bz

Differential equation with boundary conditions on Ez or Bz
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Boundary Conditions 

§  The boundary conditions are different for TM and TE 

§  For many plane waves of various k values, there are 
a spectrum of eigenvalues     and eigenfunctions       
that solve the Helmholz equation 

     Here the wave number      of a particular mode    is     

γλ ψλ(x, y)

(ψ ≡ Ez)|S = 0 (TM)

�
∂(ψ ≡ Bz)

∂n

�
|S = 0 (TE)

�
∇2

t + γ2
λ

�
ψλ(x, y) =

�
∂2

∂x2
+

∂2

∂y2
+ γλ

�
ψλ(x, y) = 0

�kλ λ

k2λ = µεω2 − γ2
λ
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Cutoff Frequency 

§  What happens when a mode has a frequency such that 
the right hand side above is negative? 
§  Then      is imaginary and the mode does not propagate 
§  This property is called cutoff 
§  This happens for frequencies below the cutoff frequency 

§  If you want to propogate a single frequency mode (best 
for narrow-band response) 
§  It’s best to build your waveguide so its frequency is below 

cutoff for the fundamental mode and below cutoff for all 
other modes 

k2λ = µεω2 − γ2
λ

kλ

ω2
λ ≡ γ2

λ

µ�
k2λ = µ�(ω2 − ω2

λ)


