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Monday, September 10 2012

E&M: Plane Waves, Waveguides, Boundary Absorption

Todd Satogata
Jefferson Lab and Old Dominion University

Happy Birthday to Arthur Compton (1927 Nobel), Joey Votto, Colin Firth, and the LHC!
Happy Swap Ideas Day, International Make-Up Day, and Cheap Advice Day!
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Maxwell’s Equations

Electric charge density

V-D = P Electric charge generates electric displacement
VxE=- a—B Faraday’s Law

Ot
V-B=0 No magnetic charges

Vx H=J]+ G_D Magnetic field generated by real or
r\ Ot  displacement current density

Electric current density

. . . 9
Maxwell’s Equations are linear in the source terms p and J.
In general will generate linear (partial) differential
equations to solve. Superposition valid!
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Constitutive Relations

co = 8.85 x 10712

D : Electric displacement field

B = pH = pi,poH

.!effergon Lab

E - Electric field

e : Permittivity

Ho = 4 X 10_7

B Magnetic field
H : Magnetizing field

e : Permeability
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Source-Free Maxwell Equations

= When there are no sources (J = 0, p = 0 ) then
Maxwell’'s equations become much more symmetric:

— —

V.D =0

Vx =0 B
ot

V.5 =0 i~ 5
. - 0D
VAV
8 ot
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Harmonic Dependence of Fields

* The linearity of the first order time derivatives
suggests that we can assume a harmonic time
dependence of our magnetic and electric fields

B(Z,t) = By(Z) e
E(Z,t) = Eo(Z) e ™?

This gives the spatial Maxwell Equations:

g
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Plane Waves

» Taking the curl of each curl equation and using the
identity

-  — —

Vx(VxE)=V(V-E)-V2E =-V%E

then gives us two identical spatial wave equations with
straightforward solutions:

(3—57 t) _ EO eiE-a‘c’—iwt

g(f, t) _ EO eiE-f—iwt

v |
)

These are plane waves traveling in direction k&
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Plane Wave Properties

E(f, t) = E, oik-Z—iwt

B(Z,t) = By oik-Z—iwt

The source-free divergence equations imply
k-Ey=k-By=0 )
so the fields are both transverse to the direction k&

Faraday’s law also implies that both fields are spatially

transverse to each other

- kx E W x B .
W C

Here n is the index of refraction.
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Standing Waves

E(f, t) _ E_'O ez’E-f—iwt

é(f, t) _ B’O eilg-f—iwt

Note that Maxwell’'s equations are linear, so any linear
combination of magnetic/electric fields is also a solution.

Thus a standing wave solution is also acceptable,
where there are two plane waves moving in opposite
directions:

E(f, t) _ EO (ezk-az—zwt _|_e—zk-ac—zwt)

B(f, t) _ BO (ezk-x—zwt _I_e—zk-x—zwt)
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Polarization

E(f, t) _ E_'O ez’E-f—z’wt

B’(f, t) _ B’O eiE-:E’—iwt

» Aslong as the £ and B fields are transverse, they
can still have different transverse components.
= So our description of these fields is also incomplete

until we specify the transverse coordinates at all
locations in space

= This is equivalent to an uncertainty in phase of rotation
of £ and B around the wave vector £ .

= The identification of this transverse field coordinate
basis defines the polarization of the field.

> @ JSA
Jfoel'SOﬂ Lab T. Satogata / Fall 2012 ODU TAAD1 Lectures 9 | @



Linear Polarization

E(f, t) _ EO eiE-f—iwt

g(f, t) _ B’O eiE-f—iwt

= So, for example, if E and B transverse directions are
constant and do not change through the plane wave,
the wave is said to be linearly polarized.

Magnetic field '/' \

1/\\..
v".\ ‘.‘u @
1"/\'- &
Electric field E/B field oscillations
are IN phase
A

Fields each stay in one plane
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Circular Polarization

E(f, t) — EO (eik-x—z’wt _|_e'ik-as—'iwt—|—7r/2)

wofl

(f, t) _ BO (eik:-x—z'wt _|_eik‘-x—iwt—|—ﬂ'/2)

» If £ and B transverse directions vary with time, they can
appear as two plane waves traveling out of phase. This
phase difference is 90 degrees for circular polarization.

direction of

& propagation
direction of

Two equal-amplitude linearly | propagation
polarized plane waves
90 degrees out of phase

Electric 2

Fields
| If this wave were approaching
an observer, its electric
vector would appear to be

Note the 90°
phase difference
y »
rotating counterclockwise.

This is called right -
) circular polarization. @ @JSA
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Back to Maxwell, Now in Accelerators

= Not all space is source-free
= We’'ll have to deal with boundary conditions

= We’'ll even have to deal with complicated (linear)
combinations of our plane waves in source-free space

= Accelerators have privileged directions
= E.g. the design momentum direction of the beam
= This is not always the same as our k direction!

= S0 let’'s break down Maxwell's equations again, now
into transverse and longitudinal (z) components

@
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Transverse Separation of Coordinates

= Here 2 labels the direction along the beam, andAt
labels transverse coordinates perpendicular to 2

E=E:+E, E,=E-(E-z)t
B=B.z:+B, B,=B-(B-z)z
[ E
V?+(uew®)-k*1{ . =0
02+ (usor) 1
OF T T
“+iwzx B, =V E, 2-(Vt><Et)=za)Bz
0z
0B, L L (e = ,
—iuewzx E, =V B, z-(Vtx Bt):—z,uga)Ez
0z
6t Et:_aEz 6t'ét__aBz
0z 0z
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Transverse Separation of Coordinates I

= \We can even write down the transverse fields
completely in terms of the longitudinal fields

— 1 — R — 7
E, = e 2 [kVtEZ — w2z X Vth_
By = ——— |kViB. — pew? x V, B,
pew= — k ]

Notice how beautifully symmetric these equations are.

This is a helpful decomposition of plane wave solutions to
Maxwell’'s equations into one longitudinal direction and
two transverse directions.
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Boundary Conditions: TM and TE Modes

— 1 — . — ]
E, = e 2 [kVtEZ — w2z X Vth_
Et — 2@ > [kﬁth — UEWZ X ﬁth_
pew= — k |

= We can come up with some boundary conditions for a
couple of simple cases where either electric (TE) or
magnetic (TM) fields are completely transverse to 2

Transverse Magnetic (TM)

B, =0; Boundary Condition £,| =0
Transverse Electric (TE)
.. OB
E_=0; Boundary Condition —%| =0
on |
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Waveguides

= Consider the relationship between the transverse

field components L +1 .
H. = _—zx E,

t
\ Impedance Z

Wave Impedance

Z:<ga) k, \ &
Ko _ k /'“ (TE) E.=0
| & k\e
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Waveguides

E(f, t) _ E_'O ez’E-f—z’wt
B’(f, t) _ B’O eiE-f—iwt

= Plane waves carry electromagnetic energy in the /2
direction and are periodic in all three spatial dimensions

= We can use that spatial periodicity in transverse boundary
conditions, such as at a conductor wall.

» (Near-)perfect conductors allow us to
match transverse boundary conditions

This gives a plane wave propogating
longitudinally in a finite transverse volume
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Transverse Fields as an Eigenvalue Problem

TM Waves

E‘t — + %ﬁ v v = (pew?® — k%)
TE Waves

ﬁt — + %6 v = (pew® — k?)

Y = B,

Transverse Helmholz Equation

(Vf+72)w=(82 o +72)w=0

+
ox> 0y’

Differential equation with boundary conditions on E, or B,
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Boundary Conditions

* The boundary conditions are different for TM and TE

w=rs=o m (L) —o (p)

= For many plane waves of various k values, there are
a spectrum of eigenvalues 7x and eigenfunctions ¥ (x,¥)
that solve the Helmholz equation
0? 0?

(Vi +73) oa(z,y) = (@ +t o 7,\> oy (z,y) = 0

Here the wave number k&, of a particular mode A\ is

kX = pew? =73
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Cutoff Frequency
kX = pew? =73

» What happens when a mode has a frequency such that
the right hand side above is negative?
= Then k), is imaginary and the mode does not propagate
* This property is called cutoff
» This happens for frequencies below the cutoff frequency

’7_3\

JLE

* |f you want to propogate a single frequency mode (best
for narrow-band response)

* |t's best to build your waveguide so its frequency is below
cutoff for the fundamental mode and below cutoff for all
other modes

2 2

w5 = ki = pe(w? — w3)
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