Physics 696 Topics in Advanced Accelerator Design I Monday, September 10 2012

E&M: Plane Waves, Waveguides, Boundary Absorption

Todd Satogata Jefferson Lab and Old Dominion University

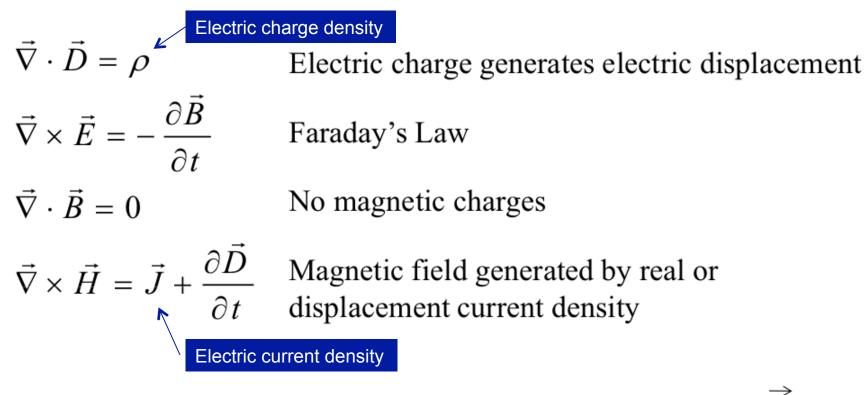
Happy Birthday to Arthur Compton (1927 Nobel), Joey Votto, Colin Firth, and the LHC! Happy Swap Ideas Day, International Make-Up Day, and Cheap Advice Day!

1

T. Satogata / Fall 2012 ODU TAAD1 Lectures

lefferson Lab

Maxwell's Equations



Maxwell's Equations are linear in the source terms ρ and \overline{J} . In general will generate linear (partial) differential equations to solve. Superposition valid!

efferson Lab

Constitutive Relations

 \vec{D} : Electric displacement field

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_r \varepsilon_0 \vec{E}$$

Jefferson Lab

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{\mathrm{C}}{\mathrm{N} \cdot \mathrm{m}^2}$$

$$arepsilon$$
 : $ec{B}=\muec{H}=\mu_r\mu_0ec{H}$ μ_0 =

$$\mu_0 = 4\pi \times 10^{-7} \, \frac{\mathrm{N} \cdot \mathrm{s}^2}{\mathrm{C}^2}$$

- \vec{B} : Magnetic field
- \vec{H} : Magnetizing field
 - $\varepsilon: \mbox{Permeability}$

ODU TAAD1 Lectures

 \vec{E} : Electric field

Permittivity

3

 $\varepsilon_0 \mu_0 = \frac{1}{c^2}$

Source-Free Maxwell Equations

• When there are no sources ($\vec{J} = 0, \rho = 0$) then Maxwell's equations become much more symmetric:

$$\vec{\nabla} \cdot \vec{D} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \vec{D} = \epsilon \vec{E}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{H} = \frac{1}{\mu} \vec{B}$$

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

4

Jefferson Lab

ODU TAAD1 Lectures

Harmonic Dependence of Fields

The linearity of the first order time derivatives suggests that we can assume a harmonic time dependence of our magnetic and electric fields

$$\vec{B}(\vec{x},t) = \vec{B}_0(\vec{x}) e^{-i\omega t}$$
$$\vec{E}(\vec{x},t) = \vec{E}_0(\vec{x}) e^{-i\omega t}$$

This gives the spatial Maxwell Equations:

 $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{E} - i\omega \vec{B} = 0$ $\vec{\nabla} \cdot \vec{E} = 0$ $\vec{\nabla} \times \vec{B} + i\omega\mu\epsilon\vec{E} = 0$

5

efferson Lab

Plane Waves

 Taking the curl of each curl equation and using the identity

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) - \nabla^2 \vec{E} = -\nabla^2 \vec{E}$$

then gives us two **identical** spatial wave equations with straightforward solutions:

$$[\nabla^2 + \mu \epsilon \omega^2] \vec{E} = 0 \quad \Rightarrow \quad \vec{E}(\vec{x}, t) = \vec{E}_0 e^{i\vec{k}\cdot\vec{x} - i\omega t}$$
$$[\nabla^2 + \mu \epsilon \omega^2] \vec{B} = 0 \quad \Rightarrow \quad \vec{B}(\vec{x}, t) = \vec{B}_0 e^{i\vec{k}\cdot\vec{x} - i\omega t}$$

These are plane waves traveling in direction \vec{k}

6

T. Satogata / Fall 2012 ODU TAAD1 Lectures

Jefferson Lab

Plane Wave Properties

$$\vec{E}(\vec{x},t) = \vec{E}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$
$$\vec{B}(\vec{x},t) = \vec{B}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$

The source-free divergence equations imply $\vec{k} \cdot \vec{E}_0 = \vec{k} \cdot \vec{B}_0 = 0$ so the fields are both transverse to the direction \vec{k}

Faraday's law also implies that both fields are spatially transverse to each other

$$\vec{B}_0 = \frac{\vec{k} \times \vec{E}_0}{\omega} = \frac{n\hat{n} \times \vec{E}_0}{c} \qquad \hat{n} \equiv \frac{\vec{k}}{k}$$
Here n is the index of refraction.
T. Satogata / Fall 2012 ODU TAAD1 Lectures 7

Standing Waves

$$\vec{E}(\vec{x},t) = \vec{E}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$
$$\vec{B}(\vec{x},t) = \vec{B}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$

Note that Maxwell's equations are linear, so any linear combination of magnetic/electric fields is also a solution.

Thus a **standing wave** solution is also acceptable, where there are two plane waves moving in opposite directions:

$$\vec{E}(\vec{x},t) = \vec{E}_0 \left(e^{i\vec{k}\cdot\vec{x}-i\omega t} + e^{-i\vec{k}\cdot\vec{x}-i\omega t} \right)$$
$$\vec{B}(\vec{x},t) = \vec{B}_0 \left(e^{i\vec{k}\cdot\vec{x}-i\omega t} + e^{-i\vec{k}\cdot\vec{x}-i\omega t} \right)$$

lefferson Lab

ODU TAAD1 Lectures

Polarization

$$\vec{E}(\vec{x},t) = \vec{E}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$
$$\vec{B}(\vec{x},t) = \vec{B}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$

- As long as the \vec{E} and \vec{B} fields are transverse, they can still have different transverse components.
 - So our description of these fields is also incomplete until we specify the transverse coordinates at all locations in space
 - This is equivalent to an uncertainty in phase of rotation of \vec{E} and \vec{B} around the wave vector \vec{k} .
 - The identification of this transverse field coordinate basis defines the **polarization** of the field.

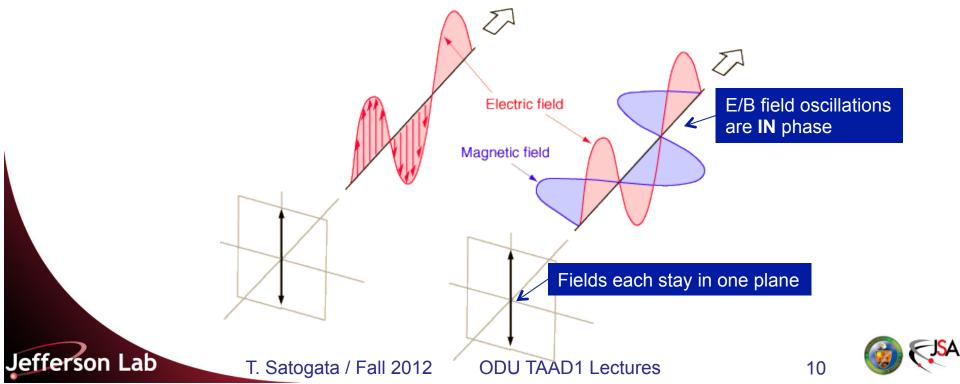
9

efferson Lab

Linear Polarization

$$\vec{E}(\vec{x},t) = \vec{E}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$
$$\vec{B}(\vec{x},t) = \vec{B}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$

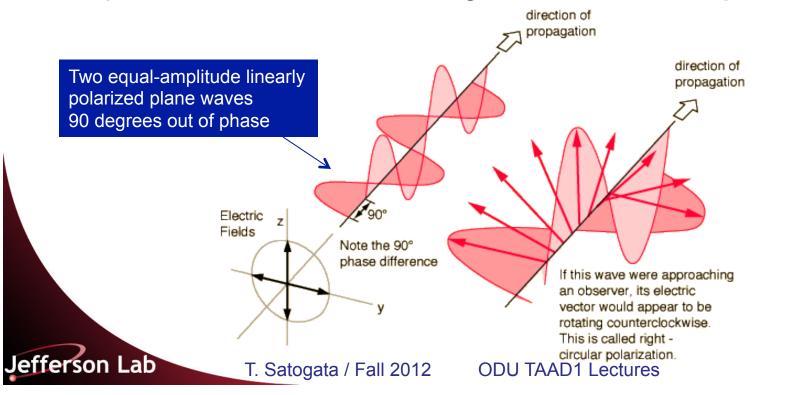
So, for example, if *E* and *B* transverse directions are constant and do not change through the plane wave, the wave is said to be **linearly polarized**.



Circular Polarization

$$\vec{E}(\vec{x},t) = \vec{E}_0 \left(e^{i\vec{k}\cdot\vec{x}-i\omega t} + e^{i\vec{k}\cdot\vec{x}-i\omega t+\pi/2} \right)$$
$$\vec{B}(\vec{x},t) = \vec{B}_0 \left(e^{i\vec{k}\cdot\vec{x}-i\omega t} + e^{i\vec{k}\cdot\vec{x}-i\omega t+\pi/2} \right)$$

• If \vec{E} and \vec{B} transverse directions vary with time, they can appear as two plane waves traveling out of phase. This phase difference is 90 degrees for **circular polarization**.



Back to Maxwell, Now in Accelerators

Not all space is source-free

efferson Lab

- We'll have to deal with boundary conditions
- We'll even have to deal with complicated (linear) combinations of our plane waves in source-free space
- Accelerators have privileged directions
 - E.g. the design momentum direction of the beam
 - This is not always the same as our k direction!
 - So let's break down Maxwell's equations again, now into transverse and longitudinal (z) components

Transverse Separation of Coordinates

- Here \hat{z} labels the direction along the beam, and t labels transverse coordinates perpendicular to \hat{z}

$$\vec{E} = E_{z}\hat{z} + \vec{E}_{t} \qquad \vec{E}_{t} = \vec{E} - (\vec{E} \cdot \hat{z})\hat{z}$$

$$\vec{B} = B_{z}\hat{z} + \vec{B}_{t} \qquad \vec{B}_{t} = \vec{B} - (\vec{B} \cdot \hat{z})\hat{z}$$

$$\begin{bmatrix}\nabla_{t}^{2} + (\mu\varepsilon\omega^{2}) - k^{2}\end{bmatrix}\begin{bmatrix}\vec{E}\\\vec{B} = 0$$

$$\frac{\partial\vec{E}_{t}}{\partial z} + i\omega\hat{z} \times \vec{B}_{t} = \vec{\nabla}_{t}E_{z} \qquad \hat{z} \cdot (\vec{\nabla}_{t} \times \vec{E}_{t}) = i\omega B_{z}$$

$$\frac{\partial\vec{B}_{t}}{\partial z} - i\mu\varepsilon\omega\hat{z} \times \vec{E}_{t} = \vec{\nabla}_{t}B_{z} \qquad \hat{z} \cdot (\vec{\nabla}_{t} \times \vec{B}_{t}) = -i\mu\varepsilon\omega E_{z}$$

$$\vec{\nabla}_{t} \cdot \vec{E}_{t} = -\frac{\partial E_{z}}{\partial z} \qquad \vec{\nabla}_{t} \cdot \vec{B}_{t} = -\frac{\partial B_{z}}{\partial z}$$

Jefferson

Transverse Separation of Coordinates II

 We can even write down the transverse fields completely in terms of the longitudinal fields

$$\vec{E}_t = \frac{i}{\mu\varepsilon\omega^2 - k^2} \left[k\vec{\nabla}_t E_z - \omega\hat{z} \times \vec{\nabla}_t B_z \right]$$
$$\vec{B}_t = \frac{i}{\mu\varepsilon\omega^2 - k^2} \left[k\vec{\nabla}_t B_z - \mu\varepsilon\omega\hat{z} \times \vec{\nabla}_t E_z \right]$$

Notice how beautifully symmetric these equations are.

This is a helpful decomposition of plane wave solutions to Maxwell's equations into one longitudinal direction and two transverse directions.

14

Jefferson Lab

Boundary Conditions: TM and TE Modes

$$\vec{E}_t = \frac{i}{\mu\varepsilon\omega^2 - k^2} \left[k\vec{\nabla}_t E_z - \omega\hat{z} \times \vec{\nabla}_t B_z \right]$$
$$\vec{B}_t = \frac{i}{\mu\varepsilon\omega^2 - k^2} \left[k\vec{\nabla}_t B_z - \mu\varepsilon\omega\hat{z} \times \vec{\nabla}_t E_z \right]$$

 We can come up with some boundary conditions for a couple of simple cases where either electric (TE) or magnetic (TM) fields are completely transverse to
 ²
 Transverse Magnetic (TM)

$$B_z = 0;$$
 Boundary Condition $E_z|_s = 0$

Transverse Electric (TE)

efferson Lab

$$E_z = 0;$$
 Boundary Condition $\frac{\partial B_z}{\partial n}\Big|_S = 0$
T. Satogata / Fall 2012 ODU TAAD1 Lectures 15

Waveguides

Consider the relationship between the transverse field components

$$\vec{H}_{t} = \frac{\pm 1}{Z} \hat{z} \times \vec{E}_{t}$$
Impedance Z

Wave Impedance

Jefferson Lab

$$Z = \begin{cases} \frac{k}{\varepsilon \omega} = \frac{k}{k_0} \sqrt{\frac{\mu}{\varepsilon}} & \text{(TM)} \quad B_z = 0\\ \frac{\mu \omega}{k} = \frac{k_0}{k} \sqrt{\frac{\mu}{\varepsilon}} & \text{(TE)} \quad E_z = 0 \end{cases}$$

16

ODU TAAD1 Lectures

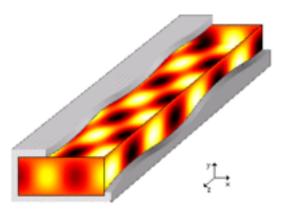
Waveguides

$$\vec{E}(\vec{x},t) = \vec{E}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$
$$\vec{B}(\vec{x},t) = \vec{B}_0 e^{i\vec{k}\cdot\vec{x}-i\omega t}$$

- Plane waves carry electromagnetic energy in the $\ k$ direction and are periodic in all three spatial dimensions
 - We can use that spatial periodicity in transverse boundary conditions, such as at a conductor wall.
 - (Near-)perfect conductors allow us to match transverse boundary conditions

This gives a plane wave propogating longitudinally in a finite transverse volume

efferson Lab



Transverse Fields as an Eigenvalue Problem TM Waves

$$\vec{E}_{t} = \pm \frac{ik}{\gamma^{2}} \vec{\nabla}_{t} \psi \qquad \begin{array}{c} \gamma \equiv (\mu \varepsilon \omega^{2} - k^{2}) \\ \psi \equiv E_{z} \end{array}$$

TE Waves

Jefferson Lab

$$\vec{H}_{t} = \pm \frac{ik}{\gamma^{2}} \vec{\nabla}_{t} \psi \qquad \gamma \equiv (\mu \varepsilon \omega^{2} - k^{2}) \\ \psi \equiv B_{z}$$

Transverse Helmholz Equation

$$\left(\nabla_{t}^{2}+\gamma^{2}\right)\psi = \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\gamma^{2}\right)\psi = 0$$

Differential equation with boundary conditions on E_z or B_z

Boundary Conditions

The boundary conditions are different for TM and TE

$$(\psi \equiv E_z)|_{\rm S} = 0 \ ({\rm TM}) \qquad \left(\frac{\partial(\psi \equiv B_z)}{\partial n}\right)|_{\rm S} = 0 \ ({\rm TE})$$

• For many plane waves of various k values, there are a spectrum of eigenvalues γ_{λ} and eigenfunctions $\psi_{\lambda}(x, y)$ that solve the Helmholz equation

$$\left(\nabla_t^2 + \gamma_\lambda^2\right)\psi_\lambda(x, y) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \gamma_\lambda\right)\psi_\lambda(x, y) = 0$$

Here the wave number \vec{k}_{λ} of a particular mode λ is

$$k_{\lambda}^2 = \mu \varepsilon \omega^2 - \gamma_{\lambda}^2$$

🎯 📢

19

lefferson Lab

ODU TAAD1 Lectures

Cutoff Frequency

 $k_{\lambda}^2 = \mu \varepsilon \omega^2 - \gamma_{\lambda}^2$

- What happens when a mode has a frequency such that the right hand side above is negative?
 - Then k_{λ} is imaginary and the mode does not propagate
 - This property is called cutoff
 - This happens for frequencies below the cutoff frequency

$$\omega_{\lambda}^{2} \equiv \frac{\gamma_{\lambda}^{2}}{\mu\epsilon} \qquad \qquad k_{\lambda}^{2} = \mu\epsilon(\omega^{2} - \omega_{\lambda}^{2})$$

- If you want to propogate a single frequency mode (best for narrow-band response)
 - It's best to build your waveguide so its frequency is below cutoff for the fundamental mode and below cutoff for all other modes