University Physics 226N/231N Old Dominion University

Motion in One Dimension

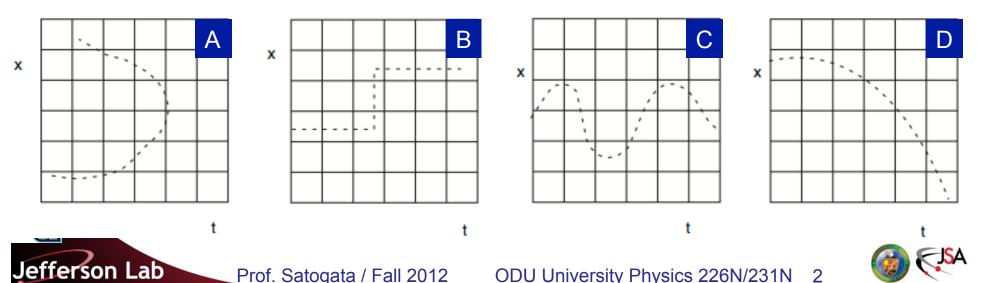
Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-ODU

Friday, August 31 2012

Happy Birthday to Hermann von Helmholtz, H. David Politzer (Physics Nobel 2004), and Larry Fitzgerald (Arizona Cardinals)

Happy International Blog Day, Eat Outside Day, and last blue moon 'til 2015!

efferson Lab



1

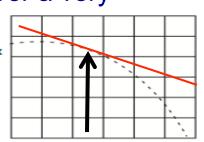
Prof. Satogata / Fall 2012 ODU University Physics 226N/231N

Ponderable: Graphs and Observation

- A: Normal objects are usually not in two places at once, and they usually have a well-defined position for all time.
- B: Normal objects usually don't suddenly jump from one location to another.
- C: Normal objects can oscillate in time, like a mass on a spring or a pendulum (we cover those later this semester)
- D: Normal objects can move parabolically (we cover that soon!)
 - I emphasize "normal" to avoid questions of quantum mechanics.
 - Change in displacement over a given time is a slope on these plots

Motion in One Dimension: Velocity

- Velocity: How far an object moves Δx in a given time interval Δt : $v = \Delta x / \Delta t$
 - Velocity, like position and displacement, is a vector with magnitude and direction
 - We use **speed** for just the magnitude in common language
 - Velocity, like position, is a function of time. Over a finite time period, we call this average velocity:


$$\bar{v}(t) = \Delta x(t) / \Delta t$$

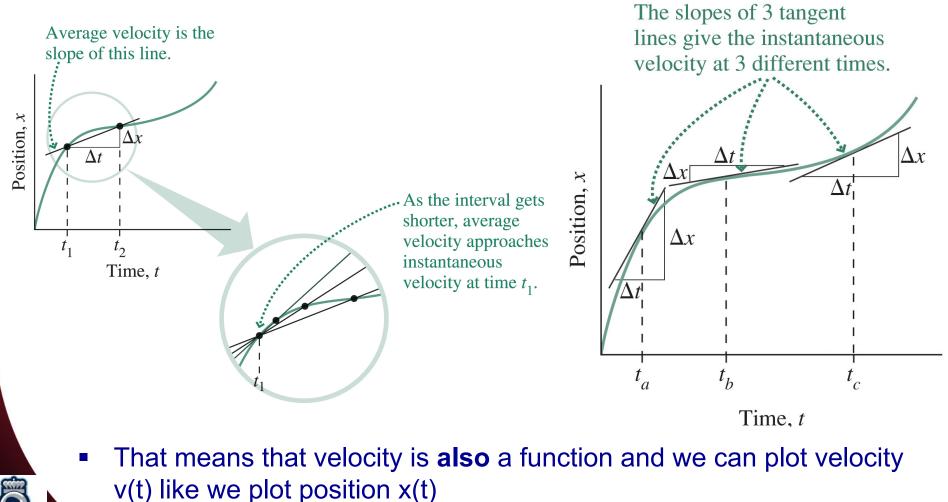
(Let's skip the calculus for now...)

Jefferson Lab

 Instantaneous velocity is the slope of position over a very small time, as

$$v(t) = \Delta x(t) / \Delta t$$
 (for very small Δt)

 $- x(t_1)$


 $x(t_2)$

 $\Delta x(t)$

We can figure this out for any time t, and it's continuous like position

Velocity is a Slope

– Velocity is the slope of the curve of x(t): how fast position is changing with time. Note that it can be positive or negative!

And then we can figure out how the velocity is changing (take slopes) too!

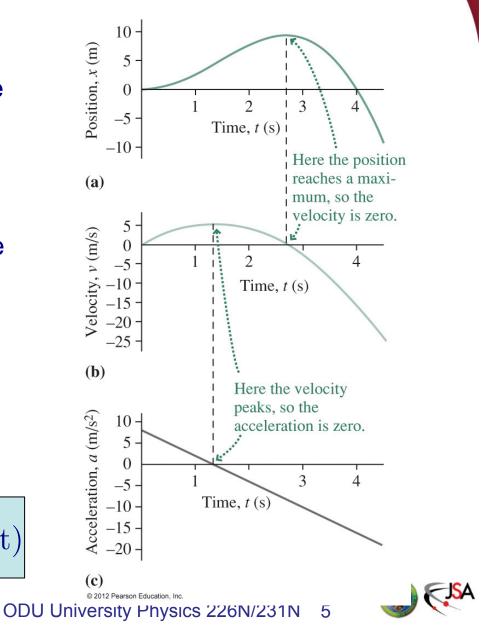
Jefferson Lab

Acceleration

- Acceleration is the rate of change of velocity.
 - Exactly like velocity was the rate of change of position!
 - Average velocity over a time interval ∆t is defined as the change in velocity divided by the

time:

 \boldsymbol{a}


Jefferson Lab

a =

 Instantaneous acceleration is the limit of the average acceleration as the time interval becomes arbitrarily short:

$$= \frac{\Delta v}{\Delta t} \quad (\text{for very small } \Delta t)$$

Acceleration is the slope of v(t)

Prof. Satogata / Fall 2012

Position, Velocity, and Acceleration

- Individual or absolute values of position, velocity, and acceleration are not related.
 - Instead, velocity depends on the rate of change of position.
 - Acceleration depends on the *rate of change* of velocity.
 - These are all **relative** quantities, and **not** based on absolute position or position of the origin
 - This makes our description of this motion universal
 - An object can be at position *x* = 0 and still be *moving*.
 - An object can have zero velocity and still be accelerating.
- At the peak of its trajectory, a juggling thud has
 - Maximum vertical displacement from my hand
 - Zero vertical velocity

efferson Lab

Constant negative acceleration due to the force of gravity

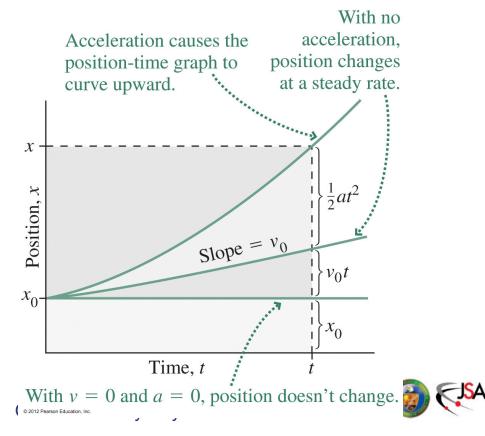
Constant Acceleration

 When acceleration is constant: position x, velocity v, acceleration a, and time t are related by

$$v(t) = v_0 + at$$

$$x(t) = x_0 + \frac{1}{2} [v_0 + v(t)]$$

$$x(t) = x_0 + v_0 t + \frac{1}{2} at^2$$


$$v^2(t) = v_0^2 + 2a[x(t) - x_0]$$

where x_0 and v_0 are **initial values** at time t = 0 and x(t)and v(t) are the values at an arbitrary time t.

Jefferson Lab

• With constant acceleration

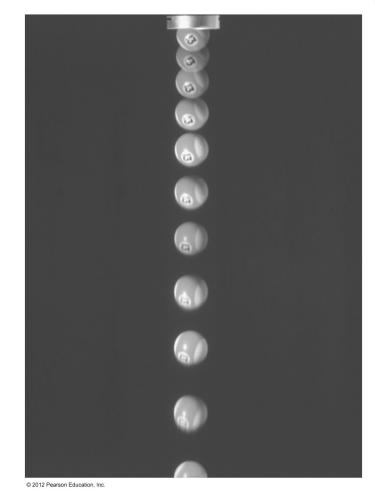
- Velocity is a linear function of time
- Position is a quadratic function of time

Prof. Satogata / Fall 2012

The Acceleration of Gravity

- The acceleration of gravity at any point is (basically) the same for all objects, regardless of mass.
- Near Earth's surface, the value of the acceleration is essentially constant at $g = 9.8 \text{ m/s}^2 = 32 \text{ ft/s}^2$
- Therefore the equations for constant acceleration apply:

efferson Lab

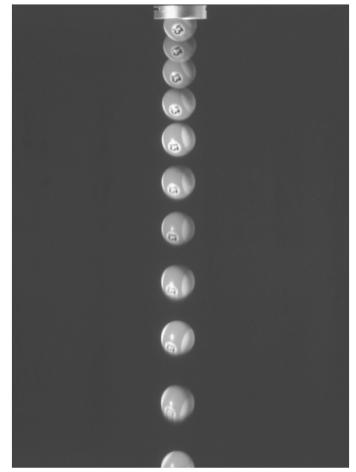

 In a coordinate system with y axis upward, they read

$$v(t) = v_0 + at$$

$$y(t) = y_0 + \frac{1}{2} [v_0 + v(t)]$$

$$y(t) = y_0 + v_0 t - \frac{1}{2} gt^2$$

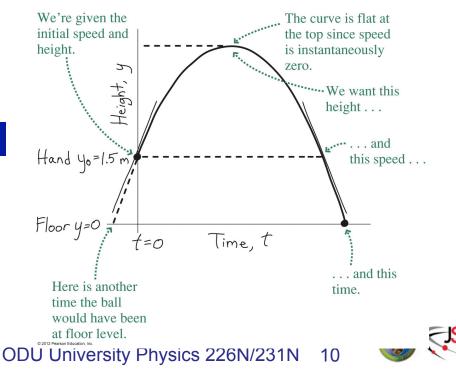
$$v^2(t) = v_0^2 - 2a[y(t) - y_0]$$


This strobe photo of a falling ball shows increasing spacing resulting from the acceleration of gravity.

(Honors Ponderable)

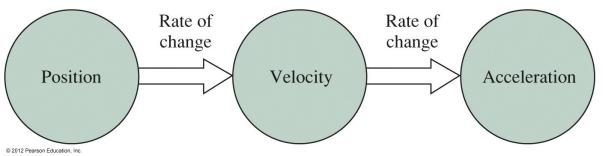
- Assume that the 13 ball in the photo is a "standard" 2.25 inch diameter billiard ball
- How fast is the strobe flashing between images of the falling ball?
- What is the ball's approximate instantaneous velocity in the first image? In the last?

Jefferson Lab


© 2012 Pearson Education, Inc.

This strobe photo of a falling ball shows increasing spacing resulting from the acceleration of gravity.

Example: The Acceleration of Gravity


- A ball is thrown straight up at 7.3 m/s, leaving your hand 1.5 m above the ground. Find its maximum height and when it hits the floor.
 - At the maximum height the ball is instantaneously at rest (even though it's still *accelerating*).
 Solving the last equation with v = 0 gives the maximum height:
- Setting y = 0 in the third equation gives a quadratic in time; the result is the two values for the time when the ball is on the floor:
 t = -0.18 s and t = 1.7 s
- The first answer tells when the ball would have been on the floor if it had always been on this trajectory; the second is the answer we want.

$$0 = v_0^2 - 2g(y - y_0)$$
or
$$y = y_0 + \frac{v_0^2}{2g} = 1.5 \text{ m} + \frac{(7.3 \text{ m/s})^2}{(2)(9.8 \text{ m/s}^2)} = 4.2 \text{ m}$$
efferson Lab
Prof. Satogata / Fall 2012

Summary

- Position, velocity, and acceleration are the fundamental quantities describing motion.
 - Velocity is the rate of change of position.
 - Acceleration is the rate of change of velocity.

• When acceleration is constant, simple equations relate position, velocity, acceleration, and time.

Jefferson Lab

- An important case is the acceleration due to gravity near Earth's surface.
- The **magnitude** of Earth's gravitational acceleration is $g = 9.8 \text{ m/s}^2 = 32 \text{ ft/s}^2$.

 $v = v_0 + at$ $x = x_0 + \frac{1}{2}(v_0 + v)t$ $x = x_0 + v_0t + \frac{1}{2}at^2$ $v^2 = v_0^2 + 2a(x - x_0)$

11

======= EXTRA SLIDES =========

ODU University Physics 226N/231N 12

(Honors Estimation)

- These are extra problems if the honors students are feeling up to the challenge. I'll include at least one in every class.
- About how far away is the Earth's horizon...
 - For a 6' tall person standing at ground level?
 - For someone looking out the window of a plane flying at 30,000 feet?
 - Assume a spherical Earth, of course... ☺

efferson Lab

 (Hint: To within a few percent, each time zone of the Earth is about 1000 miles at the equator. We'll use this later in the semester.)

13