

University Physics 226N/231N Old Dominion University

Jefferson Lab

More on Newton and Forces And Midterm Notes

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org

http://www.toddsatogata.net/2012-ODU

Monday, September 24 2012

Midterm Misconceptions I

- I'll hopefully have all the midterms graded by Wednesday
 - Overall grades seem reasonable, with a wide range
- There are some consistent errors
 - Some border on misconceptions so they're worth quick review
- When up is positive, the acceleration of gravity is g=-9.8 m/s²
 - Would often see $x x_0 = v_0 t + (1/2)at^2$ followed by a substitution of $a = 9.8 \text{ m/s}^2$... Consistency of signs matters!
- Write units with *all* numbers that have them
 - Even numbers where you're figuring out a calculation
 - This will *save* you effort in the long run

terson Lab

Midterm Misconceptions II

Not so good

 $y - y_0 = v_{y0}t + (1/2)at^2$ $4.0 = (2.2)(1.8) + (1/2)a(1.8)^2$

 $y - y_0 = v_{y0}t + (1/2)at^2$ 4.0 m = (2.2 mi/hr)(1.8 s) + (1/2)a(1.8 s)²

Better

With units it's always clear...

efferson Lab

- what conversions need to be done (if any), including mm/km etc
- what the calculation's final units are
- which numbers are pure numbers (e.g. ½) and which are measurements
- This gets even more important (and helps eliminate confusion) when working with angles (degrees vs radians)

Midterm Misconceptions III: Problem 5 Geometry

Midterm Misconceptions IV: Problem 5 Angles

Galileo and Newton

Galileo

- We can resolve the inconsistencies!
- Forces do not cause velocity
- Forces instead cause changes in velocity
 - Hey, wait, this is just acceleration
- Yes, forces are vectors that are directly related to acceleration

Use the Force, Newt!

- Newton's three "laws" of motion (1687)
- Newton's First Law

A body in uniform motion remains in uniform motion, and a body at rest remains at rest, unless acted on by a nonzero net force.

- Newton's Second Law
 - This was basically $\vec{F}_{\mathrm{net}} = m \vec{a}$
- Newton's Third Law

Jefferson Lab

If object A exerts a force on object B, then object B exerts an oppositely directed force of equal magnitude on A.

Newton's First Law

- The first law is a special case of the second law, when there's no net force acting on an object.
 - In that case the object's motion doesn't change.
 - If at rest it remains at rest.
 - If in motion, it remains in uniform motion.
 - Uniform motion is motion at constant speed in a straight line.
 - Uniform motion is a natural state, requiring no extra explanation.

Newton's Second Law

- The second law tells quantitatively how force causes changes in an object's "quantity of motion."
 - Newton defined "quantity of motion," now called momentum, as the product of an object's mass and velocity:

$$\vec{p} = m\vec{v}$$

Newton's second law equates the rate of change of momentum to the net force on an object:

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{d\vec{p}}{dt}$$

Yes, that's a derivative

When mass is constant, Newton's second law becomes

$$\vec{F} = \frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a}$$

The force required to accelerate a 1-kg mass at the rate of 1 m/s² is defined to be 1 Newton (N). efferson Lab

Mass, Inertia and Force

• If we solve the second law for the acceleration we find that $\vec{a} = \frac{\vec{F}}{m}$

showing that a given force is less effective in changing the motion of a more massive object.

 $a_{\rm known}$

aunknown

- The mass *m* that appears in Newton's laws is thus a measure of an object's **inertia** and determines the object's response to a given force.
- From Newton's second law for a force of magnitude *F*,

$$\vec{F} = m_{\text{known}} \vec{a}_{\text{known}}, \quad \vec{F} = m_{\text{unknown}} \vec{a}_{\text{unknown}}$$

 $m_{\rm known}$

we get m_{unknown}

lefferson Lab

Prof. Satogata / Fall 2012

Mass, Weight, and Gravity

Weight is the force of gravity on an object:

w = mg

- Mass is a scaler: it doesn't have direction and doesn't depend on the presence or strength of gravity.
- Weight is really a vector: it's a force that depends on gravity (really acceleration, a vector) and varies with location.
- All objects experience the same gravitational acceleration, regardless of mass.
 - Therefore objects in free fall with an observer (under the gravity alone) appear weightless because they share a common accelerated motion.
 - This effect is noticeable in orbiting spacecraft
 - because the absence of air resistance means gravity is the only force acting.
 - because the apparent weightlessness continues indefinitely, as the spacecraft and its contents "fall" around the Earth.

In a freely falling elevator you and your book seem weightless because both fall with the same acceleration as the elevator.

Like the elevator in (a), an orbiting spacecraft is falling toward Earth, and because its occupants also fall with the same acceleration, they experience apparent weightlessness.

(b)

11

© 2012 Pearson Education. Inc.

Prof. Satogata / Fall 2012

lefferson Lab

ODU University Physics 226N/231N

Newton's Third Law

- Forces always come in pairs.
 - If object A exerts a force on object B, then object B exerts an oppositely directed force of equal magnitude on A.
 - Obsolete language: "For every action there is an equal but opposite reaction."
 - The two forces always act on *different* objects; they can't cancel each other.
- Example:

efferson Lab

- Push on book of mass m_1 with force \vec{F}
- Note third-law pair \vec{F}_{12} and \vec{F}_{21}
- Third law is necessary for a consistent description of motion in Newtonian physics.

(c)

Prof. Satogata / Fall 2012

ODU University Physics 226N/231N 12

© 2012 Pearson Education, In

This figure shows two blocks with two forces acting on the pair. The net force on the **larger** block is

- A. Less than 2 N.
- B. Equal to 2 N.

Jefferson Lab

C. Greater than 2 N.

What is the acceleration \vec{a} of each block?

Ponderable (10 minutes)

- Draw and label all the forces on all three boxes above
 - Assume boxes A and B are touching
 - Assume there is no friction with the table top
 - Assume the force is constant

Jefferson Lab

- What are the initial accelerations of all three boxes?
- What is the acceleration of all three boxes after boxes A and B have hit and move with box C?
- Do boxes A and B slow down (reduce velocity or speed) when they hit box C?

- What are all the forces acting on the ball? (no friction for now!)
 - Note that forces are vectors: they have direction and magnitude!
 - Two forces: gravity pointing down and push of plane pointing perpendicular to the surface of the plane.
- What are the components of the forces? One way to look at it is with the x,y axes shown above

$$F_{g,x} = 0$$
 $F_{n,x} = F_n \sin \theta$

 $F_{g,y} = -F_g \qquad F_{n,y} = F_n \cos \theta$

Prof. Satogata / Fall 2012

efferson Lab

ODU University Physics 226N/231N 15

 $F_n \sin \theta$

- What are the components of the forces? Another way to look at it is with axes parallel to and perpendicular to the plane
 - This makes the final acceleration easier to calculate we know that the net force and acceleration are "down the plane"

$$F_{n,x} = 0 \qquad F_{g,x} = F_g \sin \theta \qquad F_g \cos \theta$$

$$F_{n,y} = F_n \qquad F_g, y = -F_g \cos \theta \qquad F_g \sin \theta$$

Prof. Satogata / Fall 2012

Jefferson Lab

ODU University Physics 226N/231N 16

 F_q

What is the normal force from the plane, F_n?

 $F_{g} \cos \theta \not \theta = F_{g,x} = F_{g} \sin \theta \qquad F_{n,x} = 0$ $F_{g,y} = -F_{g} \cos \theta \qquad F_{n,y} = F_{n}$ $F_{g,y} = F_{n} - F_{g} \cos \theta = 0 \qquad \text{No acceleration}$ $F_{net,y} = F_{n} - F_{g} \cos \theta = 0 \qquad \text{No acceleration}$ $F_g \sin \theta$ $F_n = F_g \cos \theta = (49 \text{ N}) \cos(20^\circ) = \boxed{46 \text{ N} = F_n}$

Jefferson Lab

• What is the acceleration of the ball down the plane? a_x

$$F_{g}\cos\theta \theta \qquad F_{g,x} = F_{g}\sin\theta \qquad F_{n,x} = 0$$

$$F_{g,y} = -F_{g}\cos\theta \qquad F_{n,y} = F_{n}$$

$$F_{g} \qquad F_{net,x} = ma_{x} = F_{g,x} + F_{n,x} = F_{g}\sin\theta + 0 = mg\sin(20^{\circ})$$

$$F_{g}\sin\theta \qquad a_{x} = g\sin(20^{\circ}) = (9.8 \text{ m/s}^{2})(0.342) = \boxed{3.35 \text{ m/s}^{2} = a_{x}}$$
Jefferson Lab Prof. Satogata / Fall 2012 ODU University Physics 226N/231N 18

Spring Forces

- A stretched or compressed spring produces a force proportional to the stretch or compression from its equilibrium configuration: $F_{sp} = -kx$.
- The spring force is a restoring force because its direction is opposite that of the stretch or compression.
- Springs provide convenient devices for measuring force.

lefferson Lab

