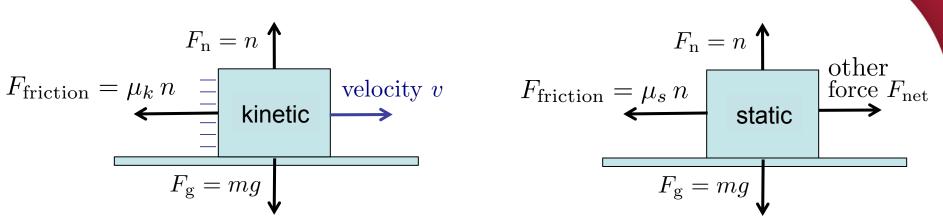


Frictional Forces



- **Friction** is a **force** (magnitude and direction!) that opposes the relative motion (velocity) of two contacting surfaces.
 - Newton's third law: Each surface feels equal and opposite force
- We have a pretty good basic model of frictional forces
 - Moving: kinetic friction

efferson Lab

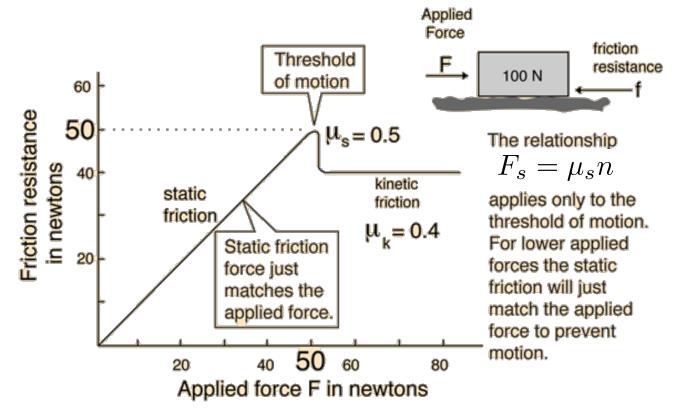
Not moving: static friction $|F_s \leq \mu_s n|$ against other net force

$$F_k=\mu_k n$$
 a

gainst relative velocity

- This model of frictional force does not depend on velocity
- Atmospheric friction (e.g. drag) is quite a lot more complicated
 - Depends on atmospheric density and viscosity, velocity, etc.

Static and Kinetic Frictional Forces



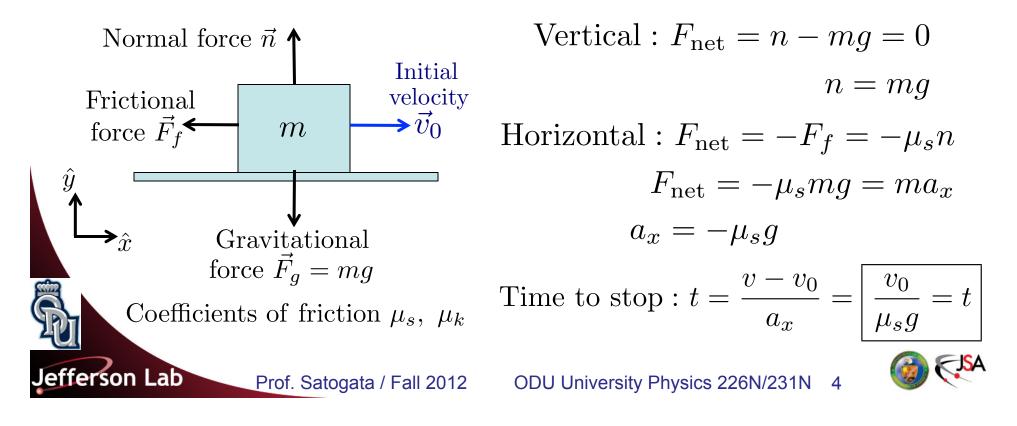
- Static friction acts to exactly cancel an applied force up to its maximum value, at which the object starts moving
 - The 100N object above does not start moving until the applied force F is greater than 50 N: $F_s = \mu_s n = (0.5)(100 \text{ N}) = 50 \text{ N}$
 - When the object starts moving, kinetic friction applies instead

Jefferson Lab

http://hyperphysics.phy-astr.gsu.edu/hbase/frict2.html

Example Friction Problem

- Problems with friction are like all other Newton's law problems.
 - Identify the forces, draw a diagram, identify vector components, write Newton's law and solve for unknowns.
 - You'll need to relate the force components in two perpendicular directions, corresponding to the normal force and the frictional force.
- Example: A box sliding to a stop due to friction on a surface



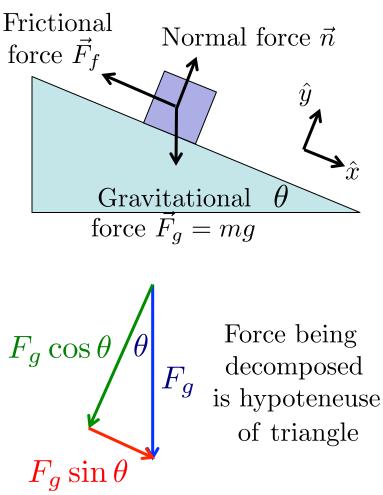
A More Practical Friction Problem

A box of mass m sits on a surface. We incline the surface until the box just starts slipping down the surface, and measure this angle of incline θ . What is μ_s ?

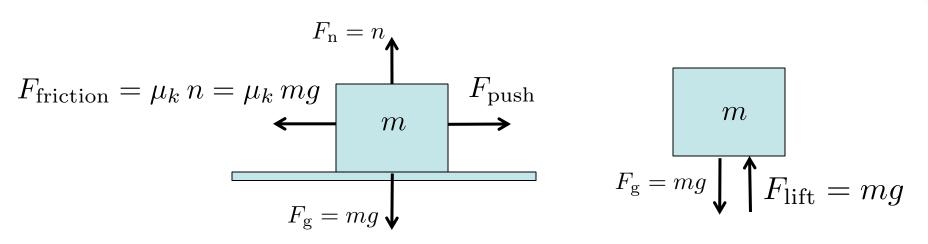
Vertical :
$$F_{net} = 0 = n - F_g \cos \theta$$

 $n = F_g \cos \theta$
Horizontal : $F_{net} = 0 = F_g \sin \theta - F_f$
 $F_f = F_g \sin \theta$

$$F_f = \mu_s n = \mu_s F_g \cos \theta$$
$$\mu_s = \tan \theta$$



Tangible/Ponderable (10 minutes)



Put a flat object on the table in front of you (e.g. cell phone, notebook..)

- Use an object that does not roll (we haven't discussed rolling yet)
- Compare the forces to push it horizontally at constant speed, and to hold it vertically still against the pull of gravity
 - Estimate the coefficient of kinetic friction between your object and the surface
 - Try it again on a different level flat surface (e.g. a white board)
 - Can coefficients of kinetic or static friction be greater than 1?
 - If you tilt the surface, can you measure the angle where it starts slipping and get μ_s that way?

Some Coefficients of Friction

First Material	Second Material	Static	Kinetic
Cast Iron	Cast Iron	1.1	0.15
Aluminum	Aluminum	1.05-1.35	1.4
Rubber	Asphalt (Dry)		0.5-0.8
Rubber	Asphalt (Wet)		0.25-0.75
Rubber	Concrete (Dry)		0.6-0.85
Rubber	Concrete (Wet)		0.45-0.75
Oak	Oak (parallel grain)	0.62	0.48
Oak	Oak (cross grain)	0.54	0.32
lce	Ice	0.05-0.5	0.02-0.09
Teflon	Steel	0.2	
Teflon	Teflon	0.04	

http://physics.info/friction

Quantities and their Relationships: Impulse

- We've covered several physics relationships so far in this course
 - Many are relationships between position, velocity, acceleration, time, and force
 - We've even defined the vectors velocity, acceleration, force, and momentum this way

$$\vec{v} \equiv \frac{d\vec{x}}{dt}$$
 $\vec{a} \equiv \frac{d\vec{v}}{dt}$ $\vec{F} \equiv m\vec{a}$ $\vec{p} \equiv m\vec{v}$

- Adding these up (or integrating!) gives the total impulse

$$\vec{I} = \int \vec{F} \, dt$$

Quantities and their Relationships: Work

- Impulse is useful, but another combination is even moreso
 - We define work W as net force applied times the distance its applied in
 - The force can be different at various spots so we really need to add together (roughly constant) force over small distances
 - This is really another integral, like impulse. It's a scaler (units: 1 J=1 N-m)

$$W \equiv \int F \, dx$$

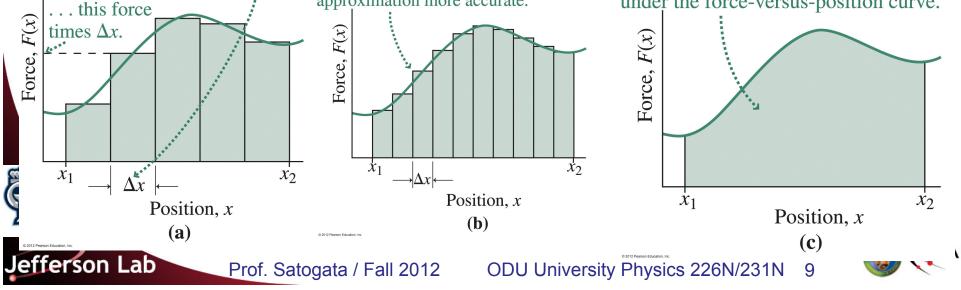
work in one dimension

The work done in moving this

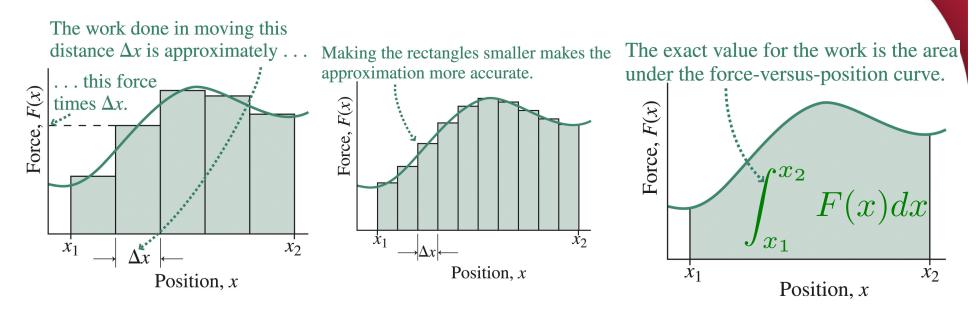
distance Δx is approximately . . .

• Making the rectangles smaller makes the approximation more accurate.

The exact value for the work is the area under the force-versus-position curve.

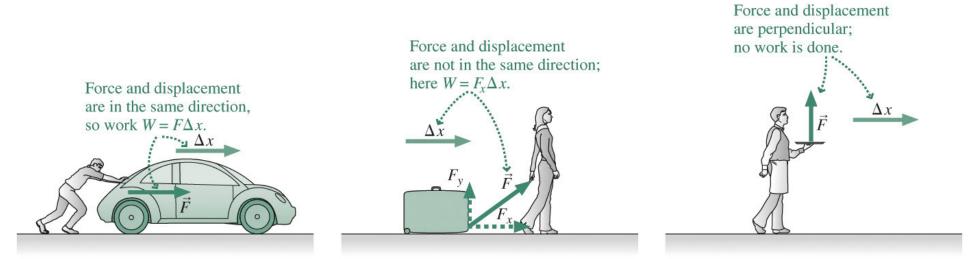


A Quick Aside: Integrals



- An integral is really a combination of two things:
 - A sum of rectangular areas that are sketched "under" a curve
 - Since these are areas, the integral has the same units as the units of the x-axis times the units of the y-axis whatever those are.
 - In calculus they often ignore those limits. In physics, we can't.
 - A **limit** of that sum of areas as the width of each rectangle gets smaller and smaller (and approaches zero)
 - We add together more and more rectangles in this process
 - There are **definite** and **indefinite** integrals

Examples of Work (from a Physicist ⁽²⁾)



Work is really a bookkeeping tool

Jefferson Lab

- We'll relate it to how the **energy** of an object or system changes
- We only count force and displacement in the same direction
- Forces applied perpendicular to Δx or when $\Delta x=0$ do no work!
 - Holding an object still against gravity, or moving it horizontally
 - Static frictional forces (since there is no Δx)

Ponderable (10 minutes)

Remember, work W in one dimension is defined as

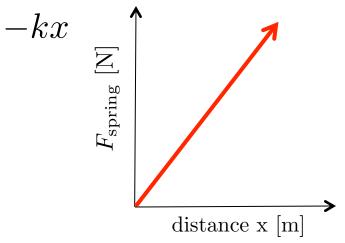
$$W \equiv \int F dx = F \Delta x \quad \text{for constant } F$$

1 Joule = 1 N - m

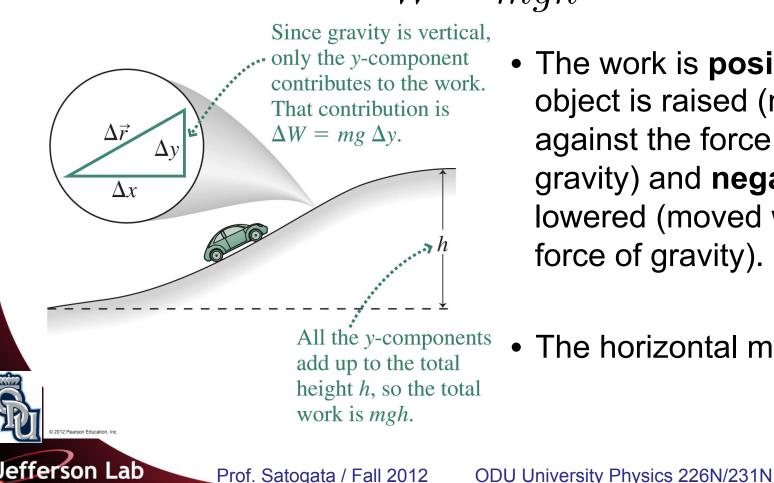
- What is the work done to lift an object of mass m over a distance h against the force of gravity? (Assume v_{final}=v₀=0 m/s)
 - This is quite straightforward: work is force times distance
- A harder one: the force of spring relates to one end's displacement by $F_{\text{spring}} = -kx$
 - What is the work done to displace a spring by a distance x in terms of the spring constant k and the distance x?

lefferson Lab

• This is a bit less straightforward: work is force times distance but the force is not constant; it's larger as we compress or stretch the spring



• The work done by an agent lifting an object of mass m against gravity depends only on the vertical distance h:



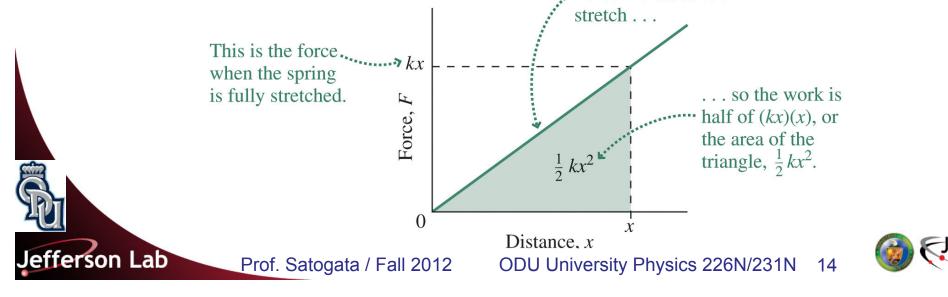
$$W = mgh$$

- The work is **positive** if the object is raised (moved against the force of gravity) and **negative** if it's lowered (moved with the force of gravity).
- The horizontal motion

Work Done in Stretching a Spring

- A spring exerts a force $F_{\text{spring}} = -kx$
- Someone stretching a spring exerts a force $F_{\rm stretch} = +kx$, and the work done is

$$W = \int_0^x F(x) \, dx = k \int_0^x x \, dx = \left(\frac{1}{2}kx^2\right)|_0^x = \left|\frac{1}{2}kx^2 = W\right|$$



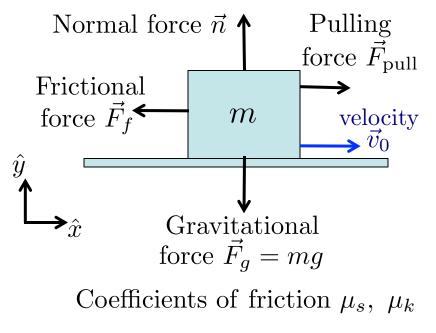
Energy

- **Energy**: the capacity of an object to perform work
 - Energy is what we add up when we do our bookkeeping
 - Work is how energy moves through application of forces
- How do we do the energy bookkeeping for a system?
 - Add up energy from a variety of different sources and things that we know can do work
 - **Conservation of energy:** total energy for a system is constant
- Kinetic energy: energy of object's motion, $KE = \frac{1}{2} mv^2$
- Gravitational potential energy: energy from the potential of falling a certain distance under constant gravity: PE_a=mg∆y
- Spring potential energy: $PE_s = \frac{1}{2} kx^2$

- Energy lost to friction over distance Δx : $E_f = \mu_x n \Delta x$
- Chemical energy, nuclear energy, and others...

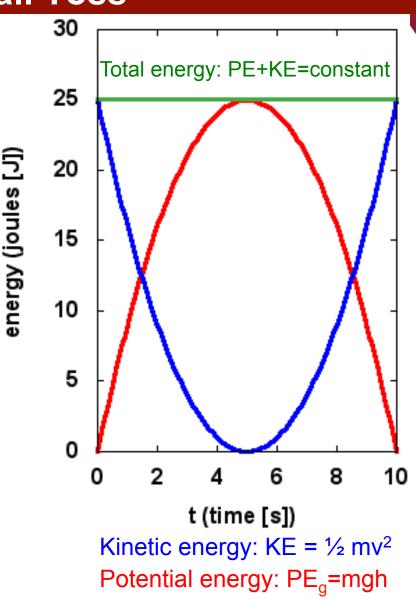
Work and Net Work

- **Energy**: the capacity of an object to perform work
 - Energy is what we add up when we do our bookkeeping
 - Work is how energy moves through application of forces
- Since work involves transfer of energy, and we want to account for all energy, it's important to account for all forces
- Example: Pulling a box against friction at constant velocity
 - Net sum of forces on box is zero
 - So work done on box is zero
 - But I still do work (I'm exerting a force over a distance)
 - The energy of my work goes into frictional losses



Example: Ball Toss

- Consider your professor tossing a juggling ball upwards
 - I do some work on it to add energy to the system
 - The system is now the ball!
- At start, h=0 m and all energy is kinetic energy
- As the ball moves up, potential energy grows and kinetic energy goes down
- At top, all energy is potential energy since v=0 m/s and KE=0 J
 - As the ball comes back down, potential energy is released and kinetic energy grows again



Work in Multiple Dimensions

- Work is adding up (integrating) force along a distance
 - But remember that force perpendicular to the distance moved does no work
 - So what we're really doing is adding up the component of force that is along the direction of motion

$$W = F_x \Delta x = F \Delta x \cos \theta \qquad \overrightarrow{F}$$

$$\theta \qquad \overleftarrow{A} \overrightarrow{F}$$

$$F_x = F \cos \theta \qquad \text{Force along x}$$

Jefferson Lab

 This process of taking the "product" of two vectors and getting a scaler by looking at the component is a dot product

$$W = \int \vec{F} \cdot d\vec{x} = \int F dx \cos \theta$$

A Varying Force in Multiple Dimensions

- In the most general case, an object moves on an arbitrary path subject to a force whose magnitude and whose direction relative to the path may vary with position.
- In that case the integral for the work becomes a **line integral**, the limit of the sum of scalar products of infinitesimally small displacements with the force at each point.

