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Gravity Reconsidered 

§  We’ve learned a lot about gravity so far 
§  But what we’ve learned about it must be an approximation 

§  We’ve assumed the gravitational force 
is independent of height and the mass 
of the earth,  

§  But Newton’s third law tells us that the box also exerts an 
equal and opposite force on the earth 
§  Gravitational forces should be the same if we interchange the 

masses of the earth and box: g is proportional to              ! 
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Gravity Reconsidered 

§  The gravitational force must also get weaker when objects 
are further apart 
§  Otherwise we’d live in a very crowded little universe 
§  Some experiments showed that our original approximation of 

the gravitational force between two objects is more generally 

 

§  This becomes our more familiar                                   when 
 

 
  and   

 

Fg =
Gm1m2

r2

G = 6.67384× 10−11 m3 kg−1 s−2

r = rEarth ≈ 6371 km

m2 = mEarth = 5.972× 1024 kg

Fg = m1a = m1g
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Ponderable 

§  How do you devise an experiment to measure a force that’s 
this weak? 
§  For two 1 kg objects 1m apart,  
§  Earth’s gravity on one of those is 
§  That’s a huge difference! 

§  And yet Henry Cavendish devised an experiment to measure 
the force of gravity between a 158 kg ball and a 0.73 kg ball. 

 
 … in 1797. 

Fg = 6.67× 10−11 N
W = mg = 9.8 N
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1797: The Cavendish Experiment 

§  A balance used to measure force or weight has friction 

§  Cavendish invented the torsion balance to measure gravity 
§   The twisting angle on a string is proportional to the force 

applied times the distance the force is applied at 
§  His balance was exquisite for its time, with a sensitivity of less 

than 10-8 N, or the weight of a very small grain of sand 
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A Law of Universal Gravitation 

§  This formula for the general gravitational force was 
developed by Newton (1687) 
§  It’s a much much better approximation, but again only an 

approximation! 
§  Superceded by Einstein’s general theory of relativity (1916) 
§  But this equation works well enough to pretty much all 

everyday phenomena 
§  Technically for point particles, but works perfectly well for 

spheres where centers are distance r apart 
§  Gravity is always attractive along the vector 
§  We know of no classic examples of anti-gravity 

•  Not even anti-matter, which still has positive mass:   

Fg =
Gm1m2

r2

G = 6.67384× 10−11 m3 kg−1 s−2

�r

E = mc2
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Orbits: Our Old Ponderable 

§  Newton explained orbits using universal gravitation and 
his laws of motion: 
–  Bound orbits are generally 

elliptical. 
–  In the special case of a circular 

orbit, the orbiting object “falls” 
around a gravitating mass, 
always accelerating toward its 
center with the magnitude of 
its acceleration remaining 
constant. 

–  Unbound orbits are hyperbolic 
or (borderline case) parabolic. 
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Projectile Motion and Orbits 

§  The “parabolic” trajectories of 
projectiles near Earth’s surface are 
actually sections of elliptical orbits 
that intersect Earth. 

§  The trajectories are parabolic only 
in the approximation that we can 
neglect Earth’s curvature and the 
variation in gravity with distance 
from Earth’s center. 
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§  In a circular orbit, gravity provides the centripetal force of 
magnitude                             needed to keep an object of 
mass m in its circular path about a much more massive 
object of mass M: 

§  Orbital speed v (solve for v): 

§  Orbital period (time to go 2πr with velocity v): 

§  This is a derivation of Kepler’s observation for planetary 
motion that the period squared goes like the orbit radius cubed:               

§  For satellites in low-Earth orbit, the period T is about 90 minutes. 

Circular Orbits 

Fcentrip = mv2/r

Fg = Fcentrip ⇒ GMm

r2
=

mv2

r

v =
�
GM/r

T 2 =
4π2r3

GM

T 2 ∝ r3
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Ponderable 

§  What is the gravitational force between the Earth and its moon? 

§  What is the gravitational force between Todd and his laptop? 

§  What is the altitude of geosynchronous satellites above Earth? 

Fg =
Gm1m2

r2

G = 6.67384× 10−11 m3 kg−1 s−2

�Fg
�Fg

rearth−moon = 384, 400 km

mmoon = 7.3477× 1022 kgmEarth = 5.9722× 1024 kg

mTodd = 100 kg mlaptop = 1.8 kg r = 0.5 m

rEarth = 6370 km T 2 =
4π2r3

GM
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Multiple Objects 

§  To calculate the total gravitational force from many objects, 
we add together the vectors of their individual forces 
§  This is known as the principle of superposition 
§  This is (mostly) a general rule for vectors that you already know 

§  This summation extends to any number of forces: integral! 
•  We can calculate the gravitational force between any two oddly 

shaped objects by adding up (integrating) gravitational forces 
between all the combinations of all their pieces 

�Ftot = �F12 + �F13
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Gravity and Spheres 

§  Newton had invented calculus so he could do these sums for 
simple geometric objects 

§  One cool result was Newton’s Shell Theorem 
§  A uniform spherical shell of matter attracts an object that is 

outside the shell as if all the shell’s mass was concentrated at 
its center 

§  This is why we can dodge calculus and simplify calculations 
of the force of gravity for spherical objects (like planets) 



Prof. Satogata / Fall 2012         ODU University Physics 226N/231N 13 

Revisiting g 

§  Recall that we have                   near Earth’s surface 
§  And gravity says 
 
§  So                           on the surface of the Earth 

§  This applies to any nearly spherical cosmic body! 
§  Again, an approximation (spherical, uniform mass, rotation…) 

§  On Mars:                                      On Moon: 

Fg = mg

Fg =
GmmEarth

r2

g =
GmEarth

r2Earth

mMars = 6.4× 1023 kg

rMars = 3400 km

gMars = 3.7 m/s2

mMoon = 7.3× 1022 kg

rMoon = 1737 km

gMoon = 1.6 m/s2

= 0.38 gEarth = 0.16 gEarth
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•  This result holds regardless of 
whether the two points are on the 
same radial line. 

•  It’s convenient to take the zero of 
gravitational potential energy at 
infinity.  Then the gravitational 
potential energy becomes 

§  Because the gravitational force changes with distance, it’s 
necessary to integrate to calculate how gravitational potential 
energy U changes over large distances. This integration gives 

Gravitational Potential Energy 

∆U12 = Gm1m2

� r2

r1

r−2dr = Gm1m2(−r−1)

����
r2

r1

= Gm1m2

�
1

r1
− 1

r2

�

U(r) = −Gm1m2

r
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§  The total energy E = K + U, the sum of kinetic energy K 
and potential energy U, determines the type of orbit: 

§  E < 0: The object is in a bound, elliptical orbit. 
•  Special cases include circular orbits and the straight-line paths of 

falling objects. 
§  E > 0: The orbit is unbound and hyperbolic. 
§  E = 0: The borderline case gives a parabolic orbit. 

Energy and Orbits 
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Escape Velocity 

§  An object with total energy E less than zero is in a bound orbit and 
can’t escape from the gravitating center. 

§  With energy E greater than zero, the object is in an unbound orbit 
and can escape to infinitely far from the gravitating center. 

§  The minimum speed (launching directly away from the center of 
the earth) required to escape is given by 

  
0 = K +U = 1

2 mv2 !
GMm

r

•  Solving for v gives the escape velocity:  

–  Escape velocity from Earth’s surface is about 11 km/s.  

vesc =

�
2GM

r
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Energy in Circular Orbits 

§  In the special case of a circular orbit, kinetic energy and 
potential energy are precisely related: 

  U = !2K
•  Thus in a circular orbit the total energy is 

  
E = K +U = !K = 1

2 U = !
GMm

2r
–  This negative energy shows that the orbit is bound. 
–  The lower the orbit, the lower the total energy—but the 

faster the orbital speed. 
•  This means an orbiting spacecraft needs to lose energy to 

gain speed. 
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The Gravitational Field 

§  It’s convenient to describe gravitation not in terms  
of “action at a distance” but rather in terms of a 
gravitational field that results from the presence  
of mass and that exists at all points in space. 

§  A massive object creates a gravitational field in its vicinity, and 
other objects respond to the field at their immediate locations. 

§  The gravitational field can be visualized with a set of vectors 
giving its strength (in N/kg; equivalently, m/s2) and its direction. 

Near Earth’s surface On a larger scale 
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Millennium Simulation 

§  http://www.mpa-garching.mpg.de/galform/press/  

§  The biggest and most detailed supercomputer simulation of 
the evolution of the Universe from a few hundred thousand 
years after the Big Bang to the present day. 

§  The Millennium Simulation used 10 billion particles to track 
the evolution of 20 million galaxies over the history of the 
universe. 

§  A 3-dimensional visualization of the Millennium Simulation. 
The movie shows a journey through the simulated universe. 
During the two minutes of the movie, we travel a distance for 
which light would need more than 2.4 billion years. 


