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Happy Birthday to Keith Urban, Jim Butcher, Natalie Merchant, and Pat Sajak!
Happy Frankenstein Friday and National Mincemeat Day!
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Midterm 2 Grade Distribution

» Midterm 2 class average score: 58.2 (+/- 21.2 std deviation)
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Full statistics are in solution guide on class website
Remember that | drop one midterm grade for final grading!
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Rotational Inertia and the Analog of Newton’s Law

= Rotational inertia / (or moment of inertia) is the rotational

analog of mass. Rotating the Farther away,
= Rotational inertia depends on the mass near the it’s harder
distribution of mass and its distance #1518 €asY- e |

from the rotation axis, similar to

Rotation axis
center of mass. al N

» Rotational acceleration, torque,
and rotational inertia combine
to give the rotational analog
of Newton’s second law F' = ma

T =1«

(or, more properly with vectors)
T =1«

like F = ma
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Calculating Rotational Inertia

For a single point mass m, rotational inertia is the product of mass
with the square of the distance r from the rotation axis:

] = 2 . my
= mr A Rotation
For a system of discrete masses, the W\ axis
rotational inertia is the sum of the ry
rotational inertias of the individual
masses: ry
— 2 m, r
I = E m;r; -
msj
For continuous matter, the rotational The mass element dm contributes
. .. . . rotational inertia r“ dm.-.,,
inertia is given by an integral over the
distribution of matter: H
dm
I = / r dm .
. ’ Rotation
f 7 dm R s

Similar to center of mass: ch =

M
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Some Rotational Inertias of Simple Objects

= We really do need to use calculus to figure out rotational inertias of
most simple (three-dimensional) geometrical objects

Solid sphere about diameter Flat plate about perpendicular axis
1= $MR? I=LM@+p?)

L
Thin rod about center Thin ring or hollow cylinder
I= T%MLZ about its axis
1= MR?
(b Hollow spherical shell about diameter
1=%MR?
Q Flat plate about central axis
- 1= Mad?

S

”

I .
M ;l'l;m %r(;(; Zg)out end %
Disk or solifl cylinder b /v‘
91
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Parallel Axis Theorem

= |f we know the rotational inertia /., about an axis through the
center of mass of a body, the parallel-axis theorem allows us
to calculate the rotational inertia / through any parallel axis.

This axis 1s through

= The parallel-axis theorem -
states that s0 1 = %A{:Rz.
I =1+ Md

where d is the distance from
the center-of-mass axis to the
parallel axis and M is the total
mass of the object.

(a) (b)

*
*
.
*
.
.
*
.*

This parallel axis is
a distance d = R away
from the original axis,

%)

so ] = %MR2 + Md? = %MR'“.
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Example: Hula Hoop Rotational Inertia

= What is the rotational inertia of a f e u,:
hula hoop of radius r and mass | \
M around its edge? |

» |ts center of mass is (obviously)
at the center of the circle and all
of its mass is at the same radius

I.. = Mr?

= The parallel axis theorem gives
Tedge = M1r* + Mr* = 2M7r?

Interesting... It takes twice as much

torque to turn a ring around its U
edge as it takes to turn around its

_ 2 .
center. I'=Mr I =7

(

%
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Rotational Energy

= A rotating object has kinetic energy K _ =1Iw” associated

with its rotational motion alone.

* |t may also have translational kinetic energy: K

trans

* |n problems involving energy conservation with rotating
objects, both forms of kinetic energy must be considered.

* For rolling objects, the two are related:
» The relation depends on the rotational inertia.

Example: A solid ball rolls down a hill. How
fast is it moving at the bottom?

N
o>
)
<
W

Energy bar
graphs 0

)
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Equation for energy conservation
Mgh = LRV e
2 2
2

e L2 me (L) 2 D
2 205 R} 10

Solution:
10
7
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» Rotational motion in one dimension is exactly analogous to

Rotational

linear motion in one dimension.  Displacement
= Linear and angular motion: |

.}effergon Lab

motion

Position, x ==

= Analogies between rotational and linear quantities: |

Rotation

Relation Between Linear s

Linear Quantity Angular Quantity
or Equation or Equation and Angular Quantities
Position x Angular position 0

Speed v = dx/dt
Acceleration a

Mass m
Force F

. . 1
Kinetic energy K, = ;mv

Angular speed w = d/dt
Angular acceleration «

Rotational inertia /
Torque 7

Kinetic energy K, = 5/’

Newton’s second law (constant mass or rotational inertia):

F = ma

7=l

© 2012 Pearson Education, Inc.

Rotational inertia, /

. 2O,

vV = wr

a, = ar

I = frz dm

T = rFsin 6
Torque, 7

Rotation axis

Mass closer  Same mass,
to axis: farther from axis:
lower I greater [ T
0
I= mr?— J r2dm F
7 = rF sinf
Discrete Continuous @JSA
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Direction of the Angular Velocity Vector

* The direction of angular velocity is given by the
right-hand rule.

= Curl the fingers of your right hand in the direction of rotation,
and your thumb points in the direction of the angular velocity
vector J

A -
. . /]w
- Tangential, in

V r plane of rotation

-
l {?2 ' =7 XU

1 A €A
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Direction of the Angular Acceleration

= Angular acceleration points in the direction of the change

in the angular velocity A®: AS da
a= lim — = —
At—0 At dt
= (¢ can be in the same direction as the angular velocity (0 , increasing its
magnitude but not changing its direction.
= (¥ can be opposite the angular velocity, decreasing its magnitude and possibly
flipping its sign.
= Or & can bein completely different direction than W, changing its direction
and magnitude.
t:

Weinal

gl

initial

==

Winitial
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Direction of the Torque Vector

= The torque vector is perpendicular to both the force vector F
and the displacement vector r from the rotation axis to the

force application point.
= The magnitude of the torque is

T =1rFsinf

= But torque, radius, and the force
are all vectors, and we can more
correctly express this as another
cross product:

T=7rXF

1
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The Cross Product

» The cross product or vector product is defined as the
product of two vectors that produces another vector.

= This is in contrast to the dot product that produces a scaler.

= The picture at right shows a X b with axb
bxa=—axb .
— 7. . N - ﬁ
a X b 1is perpendicular to both a and b 0
= Cross products are intrinsically three-dimensional! bxa 4
Start with the =-axb
vectors tail to Curl your fingers in a
tail.=-, direction that rotates v
;’ the first vector (7°)

..--0onto the second (ﬁ ).

Some properties of cross products:

AxB=-BxA

— —

Then your gx(§+5):ExB+Ax5

thumb points
in the direction

0
.0
.
a
.
L

7 (out of page)

of 7 = FXF. | | | @JSA
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Angular Momentum

» For a single particle, angular momentum [ is a vector
given by the cross product of the displacement vector 7
from the rotation axis with the linear momentum of the
particle: = z

L=7rxp

= Yes, this looks a lotlike W =7 x v

= For solid objects where we
know the rotational inertia,
we have another parallel
to linear motion:

. Vv is perpendicular
1o 7.

D, JSA
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Newton’s Law and Angular Momentum

* In terms of angular momentum, the rotational analog of
Newton’s second law is Al

—

This is very general since
dt rotational inertia I can change!

= A system’s angular momentum changes only if there’s a non-zero
net torque acting on the system.

= |f the net torque is zero, then angular momentum is conserved.
Changes in rotational inertia 7 then create changes in angular speed

ﬁ“’ The skater’s angular
momentum is conserved, so
her angular speed increases
e A when she reduces her
*... Arms and leg ] ] i
far from axis: rotational inertia.

~"large I, small

Mass closer to
axis: small 7,
large w, same
L=1Iw

o
©
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Conservation of Angular Momentum

* The spinning wheel initially contains all the system’s angular

momentum.

= When the student turns the wheel upside down, she changes the
direction of its angular momentum vector.

» Student and turntable rotate the other way to keep the total

angular momentum unchanged.

The student stands on a

stationary turntable holding a
wheel that spins counterclockwise;
the wheel’s angular momentum
points upward.

= Lywheel

She flips the spinning
wheel, reversing its angular
momentum. The total angular A

momentum is conserved, SO N
turntable and student (ts) must Ly
rotate the other way. i

ﬁl‘total

1 A €A
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