

 $\vec{\omega}_{\rm initial}$

Jefferson Lab

 $\vec{\omega}_{\mathrm{final}}$

University Physics 226N/231N Old Dominion University More Rotational Motion

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org

http://www.toddsatogata.net/2012-ODU

Friday October 26, 2012 Happy Birthday to Keith Urban, Jim Butcher, Natalie Merchant, and Pat Sajak! Happy Frankenstein Friday and National Mincemeat Day!

Prof. Satogata / Fall 2012 ODU

Midterm 2 Grade Distribution

Midterm 2 class average score: 58.2 (+/- 21.2 std deviation)

Jefferson Lab

Rotational Inertia and the Analog of Newton's Law

- Rotational inertia I (or moment of inertia) is the rotational analog of mass.
 Rotating the Factorial Rotating t
 - Rotational inertia depends on the distribution of mass and its distance from the rotation axis, similar to center of mass.
- Rotational acceleration, torque, and rotational inertia combine to give the rotational analog of Newton's second law F = ma

$$\tau = I\alpha$$

(or, more properly with vectors)

efferson Lab

$$\vec{\tau} = I\vec{\alpha}$$

Prof. Satogata / Fall 2012 C

like $\vec{F} = m\vec{a}$

ODU University Physics 226N/231N

Farther away. it's harder mass near the axis is easy. to spin. Rotation axis 3

Calculating Rotational Inertia

For a single point mass *m*, rotational inertia is the product of mass with the square of the distance *r* from the rotation axis:

 $I = mr^2$

For a system of discrete masses, the rotational inertia is the sum of the rotational inertias of the individual

$$I = \sum m_i r_i^2$$

For continuous matter, the rotational inertia is given by an integral over the distribution of matter:

$$I = \int r^2 \, dm$$

efferson Lab

 m_1 **Rotation** axis m_{γ} r, m_3 The mass element *dm* contributes rotational inertia $r^2 dm$... dm Rotation axis Similar to center of mass: $\vec{r}_{\rm cm} = \frac{\int \vec{r} \, dm}{r}$ Prof. Satogata / Fall 2012 ODU University Physics 226N/231N

Some Rotational Inertias of Simple Objects

 We really do need to use calculus to figure out rotational inertias of most simple (three-dimensional) geometrical objects

Parallel Axis Theorem

- If we know the rotational inertia I_{cm} about an axis through the center of mass of a body, the parallel-axis theorem allows us to calculate the rotational inertia *I* through any parallel axis.
- The parallel-axis theorem states that

Jefferson Lab

 $I = I_{\rm cm} + Md^2$

where *d* is the distance from the center-of-mass axis to the parallel axis and *M* is the total mass of the object.

Prof. Satogata / Fall 2012

Example: Hula Hoop Rotational Inertia

- What is the rotational inertia of a hula hoop of radius r and mass M around its edge?
- Its center of mass is (obviously) at the center of the circle and all of its mass is at the same radius

 $I_{\rm cm} = Mr^2$

• The parallel axis theorem gives $T = 10^{2} + 10^{2} = 210^{2}$

Jefferson Lab

 $I_{\rm edge} = Mr^2 + Mr^2 = 2Mr^2$

Interesting... It takes twice as much torque to turn a ring around its edge as it takes to turn around its center.

ODU University Physics 226N/231N 7

Rotational Energy

- A rotating object has kinetic energy $K_{rot} = \frac{1}{2}I\omega^2$ associated with its rotational motion alone.
 - It may also have translational kinetic energy: $K_{\text{trans}} = \frac{1}{2} M v^2$.
- In problems involving energy conservation with rotating objects, both forms of kinetic energy must be considered.
 - For rolling objects, the two are related:
 - The relation depends on the rotational inertia.

Equation for energy conservation $Mgh = \frac{1}{2}Mv^{2} + \frac{1}{2}I\omega^{2}$ $= \frac{1}{2}Mv^{2} + \frac{1}{2}\left(\frac{2}{5}MR^{2}\right)\left(\frac{v}{R}\right)^{2} = \frac{7}{10}Mv^{2}$ Solution: $v = \sqrt{\frac{10}{7}gh}$

ODU University Physics 226N/231N 8

Summary

- Rotational motion in one dimension is exactly analogous to linear motion in one dimension.
 - Linear and angular motion:

Analogies between rotational and linear quantities:

	Linear Quantity or Equation	Angular Quantity or Equation	Relation Between Linear and Angular Quantities	axis 02927berrer Education, Pic
	Position <i>x</i>	Angular position θ		
	Speed $v = dx/dt$	Angular speed $\omega = d\theta/dt$	$v = \omega r$	
	Acceleration a	Angular acceleration α	$a_t = \alpha r$	
	Mass <i>m</i>	Rotational inertia I	$I = \int r^2 dm$	
	Force F	Torque $ au$	$\tau = rF\sin\theta$	
	Kinetic energy $K_{\text{trans}} = \frac{1}{2}mv^2$	Kinetic energy $K_{\rm rot} = \frac{1}{2}I\omega^2$		
	Newton's second law (constant mass or rotational inertia):			
	F = ma	au = I lpha		
	© 2012 Pearson Education. Inc. Rotational inertia, I			
			Torque, $ au$	
		\cdot \cdot	Rotation axis	
	Ma	ss closer Same mass,		
8	to a low	ver I greater I	r θ	-
102	Ι	$= m_i r_i^2 \longrightarrow \int r^2 dm$	$\tau = rF\sin\theta \vec{F}$	
	D	iscrete Continuous	© 2017 Previo Robation, No.	
Jefferson Lab	Prof. Satogata	asses matter Univers	sity Physics 226N/231N	9

sition, θ

Rotation

Direction of the Angular Velocity Vector

- The direction of angular velocity is given by the right-hand rule.
 - Curl the fingers of your right hand in the direction of rotation, and your thumb points in the direction of the angular velocity vector $\vec{\omega}$

Direction of the Angular Acceleration

• Angular acceleration points in the direction of the change in the angular velocity $\Delta \vec{\omega}$: $\Delta \vec{\omega} = \Delta \vec{\omega} = d\vec{\omega}$

$$\vec{\alpha} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\omega}}{\Delta t} = \frac{d\vec{\omega}}{dt}$$

- $\vec{\alpha}$ can be in the same direction as the angular velocity $\vec{\omega}$, increasing its magnitude but not changing its direction.
- $\vec{\alpha}$ can be opposite the angular velocity, decreasing its magnitude and possibly flipping its sign.
- Or $\vec{\alpha}$ can be in completely different direction than $\vec{\omega}$, changing its direction and magnitude.

Direction of the Torque Vector

- The torque vector is perpendicular to both the force vector \vec{F} and the displacement vector \vec{r} from the rotation axis to the force application point.
 - The magnitude of the torque is

 $\tau = rF\sin\theta$

 But torque, radius, and the force are all vectors, and we can more correctly express this as another cross product:

$$\vec{\tau} = \vec{r} \times \vec{F}$$

lefferson Lab

The Cross Product

The **cross product** or **vector product** is defined as the product of two vectors that produces another vector. This is in contrast to the dot product that produces a scaler. The picture at right shows $\vec{a} \times \vec{b}$ with a×b $\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$ 'n $\vec{a} \times \vec{b}$ is perpendicular to **both** \vec{a} and \vec{b} Cross products are intrinsically three-dimensional! b×a $=-a \times b$ Start with the Curl your fingers in a vectors tail to direction that rotates tail. the first vector (\vec{r}) onto the second (\vec{F}) . Some properties of cross products: $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ $\vec{A} \times \left(\vec{B} + \vec{C}\right) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$ Then your thumb points in the direction $\vec{\tau}$ (out of page) of $\vec{\tau} = \vec{r} \times \vec{F}$. ferson Lap **ODU University Physics 226N/231N** Prof. Satogata / Fall 2012 13

Angular Momentum

• For a single particle, angular momentum \vec{L} is a vector given by the cross product of the displacement vector \vec{r} from the rotation axis with the linear momentum of the

particle:

efferson Lab

$$\vec{L} = \vec{r} \times \vec{p}$$

- Yes, this looks a lot like $\vec{\omega} = \vec{r} \times \vec{v}$
- For solid objects where we know the rotational inertia, we have another parallel to linear motion:

$$\vec{v} = m\vec{v} \quad \rightarrow \quad \vec{L} = I\vec{\omega}$$

Prof. Satogata / Fall 2012

X

 \vec{v} is perpendicular

••• to \vec{r} .

14

Newton's Law and Angular Momentum

• In terms of angular momentum, the rotational analog of Newton's second law is $\boxed{17}$

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

This is very general since rotational inertia I can change!

- A system's angular momentum changes only if there's a non-zero net torque acting on the system.
- If the net torque is zero, then angular momentum is conserved.
 Changes in rotational inertia *I* then create changes in angular speed

Conservation of Angular Momentum

- The spinning wheel initially contains all the system's angular momentum.
- When the student turns the wheel upside down, she changes the direction of its angular momentum vector.
- Student and turntable rotate the other way to keep the total angular momentum unchanged.

16