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Reference and Reiteration 

§  Rotational motion in one dimension is exactly analogous to 
linear motion in one dimension. 

§  Analogies between rotational and linear quantities: 
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Rotational Inertia and the Analog of Newton’s Law 

§  Rotational inertia I (or moment of inertia) is the rotational 
analog of mass. 
§  Rotational inertia depends on the 

distribution of mass and its distance 
from the rotation axis, similar to 
center of mass. 

§  Rotational acceleration, torque, 
and rotational inertia combine 
to give the rotational analog 
of Newton’s second law  
 
 
  
(or, more properly with vectors)    
 

τ = Iα

�τ = I�α

F = ma

like �F = m�a
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Calculating Rotational Inertia 

§  For a single point mass m, rotational inertia is the product of mass 
with the square of the distance r from the rotation axis: 
 

•  For a system of discrete masses, the 
rotational inertia is the sum of the 
rotational inertias of the individual 
masses: 
 
 

•  For continuous matter, the rotational 
inertia is given by an integral over the 
distribution of matter: 
 
 
 
 
        Similar to center of mass:  
 

I =
�

mir
2
i

I = mr2

I =

�
r2 dm

�rcm =

�
�r dm

M
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Some Rotational Inertias of Simple Objects 
§  We really do need to use calculus to figure out rotational inertias of 

most simple (three-dimensional) geometrical objects 
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Parallel Axis Theorem 

§  If we know the rotational inertia Icm about an axis through the 
center of mass of a body, the parallel-axis theorem allows us 
to calculate the rotational inertia I through any parallel axis.  

§  The parallel-axis theorem 
states that 

 where d is the distance from 
the center-of-mass axis to the 
parallel axis and M is the total 
mass of the object. 

I = Icm +Md2
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Angular Momentum 

§  For a single particle, angular momentum     is a vector 
given by the cross product of the displacement vector 
from the rotation axis with the linear momentum of the 
particle: 

§  Yes, this looks a lot like 

§  For solid objects where we 
know the rotational inertia, 
we have another parallel 
to linear motion: 

 

�L

�L = �r × �p

�ω = �r × �v

�r

�p = m�v → �L = I�ω
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Problem: Solid Sphere Rolling Down a Ramp 

θ

m1

r1
m1 is a sphere of radius r1

m1g

m1g sin θ

m1g cos θ

What is the linear acceleration? (no slipping)

Linear motion

Ff

�
Fx = Ff −m1g sin θ = m1a

Rotational motion

m1g cos θ

Ff

τ = Ffr1 I =
2

5
m1r

2
1

x̂
ŷ

a = −5

7
g sin θ

α = −a/r1
(a < 0 → α > 0)

�
τ = Ffr1 = Iα =

�
2

5
m1r

2
1

��
− a

r1

�
= −2

5
m1r1a

Ff = −2

5
m1a

−2

5
m1a−m1g sin θ = m1a
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Problem 1: Hollow Sphere Rolling Down a Ramp 

θ

m1

r1
m1 is a sphere of radius r1

m1g

m1g sin θ

m1g cos θ

What is the linear acceleration? (no slipping)

Linear motion

Ff

�
Fx = Ff −m1g sin θ = m1a

Rotational motion

m1g cos θ

Ff

τ = Ffr1

x̂
ŷ

α = −a/r1
(a < 0 → α > 0)

I =
2

3
m1r

2
1

�
τ = Ffr1 = Iα =

�
2

3
m1r

2
1

��
− a

r1

�
= −2

3
m1r1a

Ff = −2

3
m1a

−2

3
m1a−m1g sin θ = m1a a = −3

5
g sin θ
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Problem 1: Hollow Cylinder Rolling Down a Ramp 

θ

m1

r1
m1 is a sphere of radius r1

m1g

m1g sin θ

m1g cos θ

What is the linear acceleration? (no slipping)

Linear motion

Ff

�
Fx = Ff −m1g sin θ = m1a

Rotational motion

m1g cos θ

Ff

τ = Ffr1

x̂
ŷ

α = −a/r1
(a < 0 → α > 0)

I = m1r
2
1

�
τ = Ffr1 = Iα =

�
m1r

2
1

��
− a

r1

�
= −m1r1a

Ff = −m1a

−m1a−m1g sin θ = m1a a = −1

2
g sin θ
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Quiz: Rolling Race 

A.  Solid sphere, hollow sphere, solid cylinder, hollow cylinder 
B.  Hollow cylinder, solid cylinder, hollow sphere, solid sphere 
C.  It depends on their relative masses 

Isolid sphere =
2

5
MR2 Ihollow sphere =

2

3
MR2 Isolid cylinder =

1

2
MR2 Ihollow cylinder = MR2

A solid sphere, a hollow sphere, 
a solid cylinder, and a hollow cylinder 
all with the same radii roll down a ramp 
from rest (no slipping). 
In what order do they reach the bottom? 
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Quiz: Rolling Race 

A.  Solid sphere, hollow sphere, solid cylinder, hollow cylinder 
We calculated                        for the solid sphere 
  

                                               for the hollow sphere (smaller) 
 

                                               for the hollow cylinder (even smaller) 
 

Note that the acceleration doesn’t depend on the mass! 
 Lower moment of inertia => larger rolling acceleration 
 Higher moment of inertia => smaller rolling acceleration 

A solid sphere, a hollow sphere, 
a solid cylinder, and a hollow cylinder 
all with the same radii roll down a ramp 
from rest (no slipping). 
In what order do they reach the bottom? 

Isolid sphere =
2

5
MR2 Ihollow sphere =

2

3
MR2 Isolid cylinder =

1

2
MR2 Ihollow cylinder = MR2

a = −5

7
g sin θ

a = −3

5
g sin θ

a = −1

2
g sin θ
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Quiz: Rolling Race 

A.  Solid sphere, hollow sphere, solid cylinder, hollow cylinder 
B.  Hollow cylinder, solid cylinder, hollow sphere, solid sphere 
C.  It depends on their relative masses 

Isolid sphere =
2

5
MR2 Ihollow sphere =

2

3
MR2 Isolid cylinder =

1

2
MR2 Ihollow cylinder = MR2

A solid sphere, a hollow sphere, 
a solid cylinder, and a hollow cylinder 
all with the same radii roll down a ramp 
from rest (no slipping). 
In what order (fastest to slowest) are 

 their velocities at ramp bottom? 
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Quiz: Rolling Race 

A.  Solid sphere, hollow sphere, solid cylinder, hollow cylinder 

Remember for linear motion, 
So the highest linear acceleration over the same distance also gives 

 the largest final velocity. 
The division of the (same) gravitational energy gained by each between 

 rotational and kinetic energy is different for each object though. 
 

Isolid sphere =
2

5
MR2 Ihollow sphere =

2

3
MR2 Isolid cylinder =

1

2
MR2 Ihollow cylinder = MR2

A solid sphere, a hollow sphere, 
a solid cylinder, and a hollow cylinder 
all with the same radii roll down a ramp 
from rest (no slipping). 
In what order (fastest to slowest) are 

 their velocities at ramp bottom? 

v2 = v20 + 2a(x− x0)
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Problem: Angular and Linear Momentum  

A mass m with velocity v strikes perpendicularly to the end of a stick (at rest) 
of mass M and total length L that’s already got another identical mass stuck to 
its other end. 

 Find the final linear and angular velocities of the system. 
 
Conservation of linear momentum gives us the final velocity fairly quickly. 
Recall that linear momentum is defined as p=mv for each object. 
 
 
 
 

 We can’t use conservation of energy: this is a “splat” collision! 
 

m
v

L
vf?

ωf?

M

m

�
pbefore =

�
pafter mv + (M +m)(0) = (M + 2m)vf

⇒ vf =

�
m

M + 2m

�
v
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Problem: Angular and Linear Momentum  

A mass m with velocity v strikes perpendicularly to the end of a stick (at rest) 
of mass M and total length L that’s already got another identical mass stuck to 
its other end. 

 Find the final linear and angular velocities of the system. 
The angular momentum calculation needs the rotational inertia for moving 
objects both before and after. They are shown above. Remember that 
rotational inertias can just be added together for multiple objects, and angular 
momentum is defined as  
 

m
v

L
vf?

ωf?

M

m I =
1

12
ML2 + 2m

�
L

2

�2

I = m

�
L

2

�2

L = Iω

ω0 = v/r = v/(L/2)

�
Lbefore =

�
Lafter

�
m

�
L

2

�2
� �

v

(L/2)

�
=

�
1

12
ML2 + 2m

�
L

2

�2
�
ωf

A little algebra gives ωf =
6mv

L(M + 6m)


