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University Physics 226N/231N 
  Old Dominion University 

Reviewing Periodic Motion (Chapter 13) 

Dr. Todd Satogata (ODU/Jefferson Lab) 
http://www.toddsatogata.net/2012-ODU 

Monday November 12, 2012 
Happy Birthday to Lord Rayleigh (1904 Nobel), Auguste Rodin, Anne Hathaway, and Ryan Gosling! 

Happy Belated Veterans Day! 
 

There will be homework this week, but no quiz (Review Fri Nov 16) 
Next exam and homework journal due: Mon Nov 19 

x(t) = A sin(ωt+ φ0)
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Period, Frequency, Amplitude, Phase 

§  We use standard terms to describe sine- and cosine-like curves 
§  Amplitude A is the height of the curve below and above zero. 

•  Amplitude has the same units as position 

§  Period T is the time the curve takes for one oscillation 
§  Frequency f=1/T (in units of Hz where 1 Hz is 1 cycle/s) 

•  Angular frequency ω is often used where ω=2πf 

§  Phase φ0 is phase of this periodic motion at the time t=0 
§  Then the periodic motion here is written as 
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 Period T=1/frequency 

x = A sin(ωt+ φ0) = A sin(2πft+ φ0) = A sin(2πt/T + φ0)
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Periodic Motion Refresher 

§  We had described periodic motion in one dimension with the 
equation 

§  Sometimes this is written with a cosine which is okay – that’s 
just like the sine but with a different phase       at time t=0. 

§  Examples 

x = A sin(ωt+ φ0) = A sin(2πft+ φ0) = A sin(2πt/T + φ0)

φ0

ω = 1.5, ω = 1

A = 1.5, A = 0.75
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Another example 

A = 1.0 φ0 = 0.0 ω = 1.5

A = 1.0 φ0 = 0.0 ω = 1.0

A = 1.5 φ0 =
π

2
ω = 1.5

x = A sin(ωt+ φ0) = A sin(2πft+ φ0) = A sin(2πt/T + φ0)

f =
1

T
=

ω

2π
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Simple Harmonic Motion 

§  Objects in small motions around a stable equilibrium point are 
ubiquitous in physics and engineering – they’re everywhere! 
§  In these problems, the restoring force is proportional to 

displacement from the equilibrium point x=0: 
•  Negative sign is there because the direction of the force F is opposite 

to the object’s displacement x from equilibrium (at x=0) 

F = −kx

time 
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C
The motion, when plotted, 
looks like a sine or cosine! 
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Simple Harmonic Motion: Springs 

§  Remember the restoring force of a spring… 
§  That’s just the restoring force of a spring 
§  We also know Newton’s 2nd law: 

§  Position: 

§  Velocity: 

§  Acceleration: 

F = −kx

F = ma = m
dv

dt
= m

d

dt

�
dx

dt

� �

Warning: Calculus 

x(t) = A sin(ωt+ φ0)

dx

dt
= Aω cos(ωt+ φ0) (chain rule)

d

dx

�
dx

dt

�
= −Aω2 sin(ωt+ φ0) = −ω2x(t)
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Simple Harmonic Motion: Springs 

§  Remember the restoring force of a spring… 
§  That’s just the restoring force of a spring 
§  We also know Newton’s 2nd law: 

§  Position: 

§  Velocity: 

§  Acceleration: 

 

F = −kx

F = ma = m
dv

dt
= m

d

dt

�
dx

dt

� �

Warning: Calculus 

x(t) = A sin(ωt+ φ0)

dx

dt
= Aω cos(ωt+ φ0) (chain rule)

d

dx

�
dx

dt

�
= −Aω2 sin(ωt+ φ0) = −ω2x(t)

F = ma = m(−ω2x) = −mω2x = −kx

k = mω2 ⇒ ω =
�

k/m
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Tangible: Play with Springs! 

Turn off friction 

http://phet.colorado.edu/sims/mass-spring-lab/mass-spring-lab_en.html	



Measure period T for 
100 g weight, spring 1 
    What is spring k? 
 
 
 
 
 
 
How much bigger is T 
for the 250 g weight? 

ω =
�
k/m

T =
2π

ω
= 2π

�
m/k

k = 4π2m/T 2

Observe potential/kinetic energy exchange 
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Simple Pendulum 

For small angles θ

Force is F = −mg sin θ

Motion in one plane!

Restoring force F ≈ −mgθ = −mg
s

L
= −mg

L
s

Compare to F = −kx

k =
mg

L
T = 2π

�
L

g
for simple, small− angle pendulum
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Ponderable: Grandfather Clock 

§  You are asked to build a pendulum clock 

§  You want the period of the pendulum of the clock 
to be 2 seconds (counting 1s each half-swing). 

§  How long does the pendulum bob need to be to 
swing freely with a period of T=2 seconds? 

•  Is this reasonable for, say, a 6 foot wall clock? A 1 
foot mantel clock? 

§  Does this depend on the pendulum bob’s mass? 

§  How does your answer qualitatively change if the 
pendulum rod has non-negligible mass? 

§  (Insert Todd’s pendulum demo here) 
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Simple Harmonic Motion and Circular Motion 

§  Simple harmonic motion (SHM) can be viewed as one component 
(or a projected shadow) of uniform circular motion. 
§  Angular frequency ω in SHM is the same as angular velocity ω in 

circular motion. 

As the position vector    traces out a 
circle, its x– and y– components are 
sinusoidal functions of time. 

 
!r
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Simple Harmonic Motion is Everywhere! 

§  Most systems near stable equilibrium have potential energy 
curves that are approximately parabolic 
§  That is, restoring forces are approximately linear 

§  Examples include 
§  Ideal springs and pendulums 
§  Intermolecular forces in a solid 
§  Gravitational motion near stable orbits 
§  Waves (water, sound, light…) – to be covered in chapter 14 

F ≈ −kx U ≈ 1

2
kx2 =

1

2
mω2x2
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Damped Harmonic Motion 

§  With nonconservative forces (like friction) present, the 
motion of a simple harmonic oscillator “dies out” 
§  Energy is “drained” from the system into heat and friction 
§  Oscillation amplitude goes down over time (Slinky demo) 
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Damped Harmonic Motion Physics 

§  Damping is usually because of a force that resists the 
object’s motion 
§  So the usual model is to include a force that is proportional to 

the object’s velocity and acts against it 
§  This makes sense: the damping force is zero when the object is 

not moving (or v=0) 

§  For small b, the motion is like before except the amplitude 
declines exponentially towards zero (see pic on previous page) 

a ≡ d2x

dt2
v ≡ dx

dt
F = ma = m

d2x

dt2
= −kx− b

dx

dt

Restoring 
force 

Damping 
force 

x(t) = Ae−bt/2m sin(ωt+ φ0)
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Different Types of Damping 

§  (a) Underdamped 
§  Amplitude goes down slowly over many oscillations 

§  (c) Overdamped 
§  No oscillation, amplitude just gradually settles to equilibrium 

§  (b) Critically damped 
§  The fastest the oscillator can return to equilibrium without 

overshooting and continuing to oscillate 
§  “The perfect shock absorber” 

b > 2
√
mk

b < 2
√
mk

b = 2
√
mk



Prof. Satogata / Fall 2012         ODU University Physics 226N/231N 16 

Driven Oscillations 

§  Often we’re interested in what happens when an external 
periodic force acts on our oscillatory system 
§  Pumping a swing, shining laser light on an atom… 
§  Here we naturally add an extra force to our Newton’s 2nd law! 

§  The system now oscillates with a rather complicated amplitude! 

§  The important thing is that this amplitude is largest when 
•  That is, when the drive frequency matches the natural frequency  

m
d2x

dt2
= −kx− b

dx

dt
+ F0 cos(ωdt)

Restoring 
force 

Damping 
force 

Driving 
force 

ω0 ≡
�

k

m
A(ω) =

F0

m
�
(ω2

d − ω2
0)

2 + b2ω2
d/m

2

ωd = ω0
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Take-Home Tangible 
http://phet.colorado.edu/sims/resonance/resonance_en.html	



Max # of resonators 
(different m/k values) 

Damping constant 
1.0 N/(m/s) 

§  Setup and turn driver on, then adjust frequency by typing in 
new numbers 
§  How do motions vary for different m/k values as you adjust f? 
§  At f=3 Hz, which mass is moving the most? If you turn off the 

driver, is it underdamped or overdamped? 


