

University Physics 226N/231N Old Dominion University Wave Motion, Interference, Reflection (Chapter 14)

Dr. Todd Satogata (ODU/Jefferson Lab)

http://www.toddsatogata.net/2012-ODU

Monday November 26, 2012

Happy Birthday to Bach, Norbert Wiener, Charles Schulz, Fred Pohl, and Tina Turner! Happy Cyber Monday!

Midterm 3 will be returned Wednesday

We have homework due Friday, and a quiz on Friday

efferson Lab

Prof. Satogata / Fall 2012 ODU University Physics 226N/231N

Review of Wave Motion

- Explain waves as traveling disturbances that transport energy but not matter
- Describe waves quantitatively
 - Frequency, period, wavelength, and amplitude
 - Wave number and velocity
- Describe example waves
 - Waves on strings
 - Sound waves

Jefferson Lab

- Describe interference, reflection, and standing waves
- Describe the Doppler effect and shock waves

- We use standard terms to describe sine- and cosine-like curves
 - Amplitude A is the height of the curve below and above zero.
 - Amplitude has the same units as position
 - Period T is the time the curve takes for one oscillation
 - Frequency f=1/T (in units of Hz where 1 Hz is 1 cycle/s)
 - Angular frequency ω is often used where $\omega = 2\pi f$
 - **Phase** ϕ_0 is phase of the curve at the time t=0

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Then the periodic motion here is written as

Jefferson Lab

 $x = A\sin(\omega t + \phi_0) = A\sin(2\pi f t + \phi_0) = A\sin(2\pi t / T + \phi_0)$

Simple Harmonic Waves

- Waves have dependency on **both** time t and location x
- A **simple harmonic wave** has a sinusoidal shape:

$$y(x,t) = A\cos(kx - \omega t)$$

- *y* measures the wave disturbance at position *x* and time *t*.
- $k = 2\pi / \lambda$ is the **wave number**, a measure of the rate at which the wave varies in *space*.
- $\omega = 2\pi f = 2\pi/T$ is the **angular frequency**, a measure of the rate at which the wave varies in *time*.
- The wave speed, as mentioned before, is $v = \lambda f = \omega / k$.
- This is describing one "simple" wave in space and time
 - There may be many waves all interacting at once!

efferson Lab

Properties of Waves

- Wavelength λ is the distance over which a wave repeats in space.
 - Wave number | k =

Jefferson Lab

$$k = 2\pi/\lambda$$

Period T is the time for a complete cycle of the wave at a fixed position:

• Frequency
$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

- Amplitude A is the peak value of the wave disturbance.
- Wave speed is the rate at which the wave propagates:

$$v = \frac{\lambda}{T} = \lambda f$$

Prof. Satogata / Fall 2012

$$i = T$$

ODU University Physics 226N/231N 5

Waves on Strings

- A classic example of wave motion is a transverse disturbance traveling along a rope of tension T
 - We also need the "mass per unit length", $\mu = M/L$
 - This μ is **not** related to coefficients of friction!!!

T provides a restoring force that makes a rope section go around the edge of the wave using our old equations for centripetal acceleration

We can find the velocity of the wave propagation, v

$$v = \sqrt{\frac{T}{\mu}}$$

Tangible Reminder: Waves on Strings

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html

Wave Reflection

- Waves reflect at an interface with a different medium.
 - The outgoing wave interferes with the incoming wave.
 - The reflected wave is inverted, depending on properties of the second medium.
 - The diagram shows waves on a string reflecting at clamped and free ends.
 - More generally, waves are partially reflected and partially transmitted at an interface between different media.

Prof. Satogata / Fall 2012

Jefferson Lab

Wave Interference

- Unlike particles, multiple waves can intersect in space/time.
- When they are, they interfere.
 - In most cases, the waves superpose, or simply add.
 - When wave crests coincide, the interference is constructive.
 - When crests coincide with troughs, the interference is destructive.
 - Here the red and blue waves add up to the black wave
 - Sometimes they cancel each other out (destructively interfere) and sometimes they add up (constructively interfere)

Standing Waves: Fixed at Both Ends

- Waves on a confined medium reflect (with flip) at both ends.
 - An example of boundary conditions: nodes at both ends!
 - The result is standing waves that oscillate but don't propagate.
 - The length of the medium restricts allowed wavelengths and frequencies to specific, discrete values.

On a string clamped at **both ends**, the string length **must** be an integer multiple of a half-wavelength

$$L = \frac{m\lambda}{2}$$

with *m* an integer (1,2,3,...)

Jefferson Lab

Examples: Guitar/piano strings, drum heads

Prof. Satogata / Fall 2012

Standing Waves: Fixed at One End

- Waves on a confined medium reflect at both ends here too
 - But with different boundary conditions
 - Node at one end, anti-node at the other
 - The length of the medium also restricts allowed wavelengths and frequencies to specific, discrete values here

On a string clamped at **one end**, the string length **must** be an odd integer multiple of a quarter-wavelength

$$L = \frac{m\lambda}{4}$$

with m an odd integer (1,3,5,...).

Jefferson Lab

Examples: Reed woodwinds, organ pipes

Prof. Satogata / Fall 2012

Ponderable

 A string 1 m long is clamped down tightly at one end and is free to slide up and down at the other. Which one of the following values is a possible wavelength λ for this string?

A. 4/3 m B. 3/2 m C. 2 m D. 3 m $L = \frac{m\lambda}{4}$ where $m = 1, 3, 5, 7, \cdots$

lefferson Lab

Ponderable: Answer

 A string 1 m long is clamped down tightly at one end and is free to slide up and down at the other. Which one of the following values is a possible wavelength λ for this string?

2D Water Waves

- Wave motion we've discussed up to now is one-dimensional
- But waves also travel and spread through space
 - Examples: Sound waves, water waves, light from a point source
 - These waves travel outwards and dissipate as they spread

2D Water Waves

- Wave motion we've discussed up to now is one-dimensional
- But waves also travel and spread through space
 - Examples: Sound waves, water waves, light from a point source
 - These waves travel outwards and dissipate as they spread

Wave Power and Intensity

- The power carried by a wave is proportional to the wave speed and to the square of the wave amplitude.
 - Details depend on the type of wave; for waves on a string, the average power is $\bar{P} = \frac{1}{2}\mu\omega^2 A^2 v$ The plane wave doesn spread, so its intensity
- Wave **intensity** is the power per unit area.
 - In a plane wave, the intensity remains constant.
 - The plane wave is a good approximation to real waves far from their source.
 - A spherical wave spreads in three dimensions, so its intensity drops as the inverse square of the distance from its

Prof. Satogata / Fall 2012

source:

lefferson Lab

The spherical wave spreads over ever-larger areas, so its intensity drops.....

16

Interference Phenomena

- When waves of slightly different frequencies interfere, they alternate between constructive and destructive interference.
 - This gives **beats** at the difference of the frequencies. $f_{\text{beat}} = |f_1 f_2|$
 - Recall the guitar tuning waveform beat pattern
- Octave: doubling of frequency
- Human hearing: 20 Hz 20 kHz
- Piano keyboard: 27.5 Hz to 4186 Hz (7+ octaves)

efferson Lab

ODU University Physics 226N/231N 17

2D Wave Interference

http://phet.colorado.edu/en/simulation/wave-interference

Jefferson Lab

- Waves can also interfere in 2D and 3D
- Can create nodes and anti-nodes in certain directions
 - Directions/angles depend on wavelengths and spacing between sources
- Always symmetric
 Center line is always an anti-node (constructive interference)
- Experiment with interference patterns made by one or two slits, and wave reflections from walls

2D Wave Interference

http://phet.colorado.edu/en/simulation/wave-interference

Jefferson Lab

- Waves can also interfere in 2D and 3D
- Can create nodes and anti-nodes in certain directions
 - Directions/angles depend on wavelengths and spacing between sources
- Always symmetric
 Center line is always an anti-node (constructive interference)
- Experiment with interference patterns made by one or two slits, and wave reflections from walls

2D Wave Reflection: Basic Optics

Jefferson Lab

 Waves (such as light) reflect off surfaces at the same angle of incidence to the normal direction to the surface

 A perfect mirror produces 100% reflection
 But no mirror is perfect...

2D Wave Refraction: Basic Optics

- We know that water "bends" light
- In general, waves change angle when they enter a new medium
 - Due to difference in wave speed between the two media
 - This phenomena is called refraction

Wave angles towards normal when entering a **denser** medium (with lower wave speed)

2D Wave Refraction: Snell's Law

- Each wave medium is characterized by an **index of refraction** n
 - n is inversely proportional to the speed of the wave in a medium
- Snell's law of refraction: $\sin\theta_1$ v_1 n_2 $\sin\theta_2$ v_2 n_1 Refracted $heta_1$ Wave $n_1 > n_2$ Ης Incident Wave n_1 n_2 Refracted Wave Incident Wave n_2 n_1 Jefferson Lab ODU University Physics 226N/231N

Prof. Satogata / Fall 2012

22

2D Wave Refraction: Snell's Law

- Each wave medium is characterized by an index of refraction n
 - n is inversely proportional to the speed of the wave in a medium
- Snell's law of refraction:

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

2D Wave Refraction: Indices of Refraction

- Some common indices of refraction
 - Air/vacuum: ~1
 - Water: 1.333
 - Acrylic: 1.49
 - Pyrex glass: 1.470
 - Germanium: 4 (!)

- A wave can totally reflect when interacting with a interface with a lower index of refraction
 - What happens when $\theta_2 = 90^\circ$, $\sin \theta_2 = 1$ in Snell's law?

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1} \qquad \sin \theta_1 = \left| \sin \theta_c = \frac{n_2}{n_1} \right|$$

• Example: Air n=1, water n=1.333 $\Rightarrow \theta_c = 48.6^{\circ}$

Jefferson Lab

Total Internal Reflection: Underwater Surface Mirror

Prof. Satogata / Fall 2012

Jefferson Lab

ODU University Physics 226N/231N 26

Total Internal Reflection: Fiber Optics

Types of Fiber Optics

Multimode, Step-index

Multimode, Graded Index

http://www.jimhayes.com/lennielw/fiber.html

- The basis of most modern telecommunications
- High bandwidth: few GHz up to several hundred thousand GHz!
- But the underlying principles are based on total internal reflection of different
 - wavelengths of light in the fiber

Jefferson Lab Prof. Satoga