
Horizontal-Vertical coupling

With the exception of the solenoid matrix, all of our transport matrices have
had no coupling terms between x and y motion.

• In 2×2 block form: T =

(

M
H

0

0 M
V

)

.

• A quadrupole rotated by 45◦ degrees is called a skew quadrupole:

Qskew =

(

I cos π
4

I sin π
4

−I sin π
4

I cos π
4

)(

Qf 0

0 Qd

)(

I cos π
4

−I sin π
4

I sin π
4

I cos π
4

)

=
1

2

(

Qf +Qd Qd −Qf

Qd −Qf Qd −Qf

)

.

In this case off-diagonal blocks will look something like:

Qd −Qf

2
=





1

2

[

cosh(
√
k l)− cos(

√
k l)

]

1

2
√
k

[

sinh(
√
k l)− sin(

√
k l)

]

√
k
2

[

sinh(
√
k l) + sin(

√
k l)

]

1

2

[

cosh(
√
k l)− cos(

√
k l)

]



 .
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Tune measurement from turn-by-turn data

• Top: data from horiz. BPM.
• Note beating of 2 freqs.
• source: slight roll of quads.

• Middle: Raw FFT.
• Tune from FFT (128 turns).
• Two peaks.

qu ≃ 0.187.

qv ≃ 0.211.

• Bottom: Fit to single peak.
• Double peak caused by HV
coupling.

• Fit peak at q ∼ 0.200.
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Is it possible to tranform to different canonical coordinates so that a transport
matrix

T =

(

M n

m N

)

is transformed into a new matrix

U =

(

A 0

0 B

)

?

• In most cases of stable motion, the answer is yes.
Two methods are commonly used:

1. The Teng-Edwards symplectic rotation matrix formalism
• Not totally robust.
• Gives a nice interpretation for small couplings.
Leaves interpretation almost with horiz-vertical meaning.

2. A method using eigenvectors to build the similarity tranformation.
• More robust.
• Can be generalized to higher dimensions.
• Result may not correspond as easily to H-V interpretation.
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Teng-Edwards rotation

Use the similarity transformation

T = RUR−1.

The symplectic rotation

R =

(

I cosφ D−1 sinφ
−D sinφ I cosφ

)

,

where D =

(

a b

c d

)

, with ad− bc = 1. (i. e. D is symplectic.)

The coordinates (x, Px, y, Py) change to normal mode coordinates (u, Pu, v, Pv):







u

Pu

v

Pv






= R−1







x

Px

y

Py






,
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We have

U = R−1TR =

(

A 0

0 B

)

,

where we may write

A = I cosµu + Ju sinµu, and B = I cosµv + Jv sinµv,

with

Ju =

(

αu βu

−γu −αu

)

, and Jv =

(

αv βv

−γv −αv

)

.
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Teng and Edwards solution

cosµu − cosµv =
1

2
tr(M−N)

[

1 +
2det(m) + tr(nm)
[

1

2
tr(M−N)

]2

]
1

2

.

cos(2φ) =
1

2
tr(M−N)

cosµu − cosµv

.

D = − m+ ñ

(cosµu − cosµv) sin(2φ)
.

A = M−D−1m tanφ.

B = N+Dn tanφ.

Recall that ñ = SnTST.
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Example where Teng-Edwards method fails

T =









cosµ sinµ+ a2

sinµ
a 0

− sinµ cosµ 0 −a

a 0 cosµ sinµ+ a2

sinµ

0 −a − sinµ cosµ









.

• I leave it to you to verify that TSTT = S.

• Characteristic equation (if you work it out):

0 = λ4 − tr(T)(λ3 + λ) + [2 + tr(M)tr(N)− |m+ ñ]λ2

= (λ− eiµ)2(λ− e−iµ)2.

• The tunes are equal: Qu = Qv = µ
2π

.

◦ Note that m+ ñ = 0, and therefore D = 0, which does not satisfy |D| = 1.
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Eigenvector method

Assuming the motion is stable, this consists of finding the eigenvectors for T:

Tvj = λjvj ,

and constructing a similarity transformation: T → WTW−1 = U

from the real and imaginary parts of the eigenvectors vj = aj ± ibj ,

where aj and bj are the respective real and imaginary parts of vj .

It can be shown that the “rotation” matrix

W =









a1,1 b1,1 a2,1 b2,1 · · · bn,1
a1,2 b1,2 a2,2 b2,2 · · · bn,2
...

...
...

...
. . .

...
a1,2n b1,2n a2,2n b2,2n · · · bn,2n









block-diagonalizes the matrix T, and is indeed symplectic if the eigenvectors are
appropriately scaled.


 8�

USPAS: Lectures on Coupling and Chromaticity
Waldo MacKay January, 2013



For more details, see Iselin’s unfinished (symphony):

F. Christoph Iselin, “The MAD Program (Methodical Accelerator Design)
Version 8.13 Physical Methods Manual, CERN/SL/92-?? (AP) (1994).

• Warning: There are some typeohs (what’s new) in that unfinished report.
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Eigenvalues for 4x4 symplectic matrix

0 = |T− λI| = λ4 +A3λ
3 +A2λ

2 +A1λ
1 +A0 =

4
∏

j=1

(λ− λj).

The product of all four eigenvalues must give the determinant, so

A0 = λ1λ2λ3λ4 = 1.

• Also remember that if λ is an eigenvalue, then so is λ∗ since T is a real
matrix.

• In the 2×2 case, the reciprocal of an eigenvalue must equal its complex
conjugate.

• With four eigenvalues, the reciprocal and complex conjugate may be differ-
ent eigenvalues.

• For stable motion, all four eigenvalues must lie on the unit circle in the
complex plane.
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Eigenvector equation:
Tvj = λjvj .

Also
T−1vj = λ−1

j vj .

• T and T−1 have the same eigenvectors. Define K = T+T−1, then

Kvj = (T+T−1)vj = (λj + λ−1

j )vj = κvj .

• The characteristic equation of K is

0 = |K− Iκ| =
2n
∑

j=0

Cjκ
j =





n
∏

j=1

(κ− κj)





2

, with n = 2.

• In fact this holds for any 2n×2n symplectic T. (See supplementary notes.)

• This reduces the problem from a 2n-degree equation to only n-degrees.
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The answer without the tedious algebra

For the 4×4 case:

κ = λ+ λ−1 =
tr(M+N)

2
±

√

(

tr(M−N)

2

)2

+ |m+ ñ|.

κj = λ+ λ−1 ⇒ 0 = λ2 − κjλ+ 1,

λj± =
κj

2
±
√

(κj

2

)2

− 1.

• For stability the λ’s must be on the unit circle, so λ = e±iµ for real µ.

κ = eiµ + e−iµ = 2 cosµ.

• Require −2 < κ < 2 for guaranteed stability;
• values ±2 on borderline.
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Eigenvalues and Stability for 4x4 case
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e)b)a) d)

Possible configurations for eigenvalues.

• a: both planes stable.

• b, e: both planes unstable.

• c: one plane stable, other may or not be stable.

• d: one stable, other unstable.
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Momentum dependence of focusing

Quadrupole focusing comes from

k =
q

p

∂By(s)

∂x
, where p = p0 ±∆p.

So we can write:

k ≃ k0

(

1− ∆p

p

)

, with k0 =
e

p0

∂By(s)

∂x
.

For an infinitesimal step through the quad, we find

dM(0) =

(

1 0
−k0 ds 1

)

, and dM(∆p) =

(

1 0
−k ds 1

)

,

respectively for an on-momentum and off-momentum particle.


 14�

USPAS: Lectures on Coupling and Chromaticity
Waldo MacKay January, 2013



Thus, at location s, we find a change to the full turn transport matrix:

M = [dM(∆p)] [dM(0)]−1

(

cosµ0 + α sinµ0 β sinµ0

−γ sinµ0 cosµ0 − α sinµ0

)

,

where µ0 is the unperturbed phase advance of the whole machine with ∆p = 0.
Then

M(s) =

(

1 0
−k ds 1

)(

1 0
k0 ds 1

)(

cosµ0 + α sinµ0 β sinµ0

−γ sinµ0 cosµ0 − α sinµ0

)

.

Multiplying the first two matrices yields:

(

1 0
−(k − k0)ds 1

)

=

(

1 0
k0δ ds 1

)

, with δ =
∆p

p0
,

so the full product becomes:

(

cosµ0 + α sinµ0 β sinµ0

−γ sinµ0 + k0δ(cosµ0 + α sinµ0)ds cosµ0 − α sinµ0 + k0δβ sinµ0 ds

)
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Taking half of the trace, we get

cosµ =
1

2
tr(M) = cosµ0 +

k0δ

2
β sinµ0 ds

= cos(µ0 + dµ) ≃ cosµ0 − sinµ0 dµ.

k0δ

2
β sinµ0 ds = − sinµ0 dµ.

dµ = 2π dQ = −1

2
β(s)k0(s) ds δ.

Integrating around the whole ring produces the tune shift:

∆Q = − 1

4π

∮

β(s)k0(s) ds
∆p

p0
,
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Natural chromaticity

The horizontal natural chromaticity is defined as

ξxN =

(

∆Q
H

Q
H

)

/

(

∆p

p0

)

= − 1

4πQ
H

∮

βx(s)k0(s) ds.

Similarly for vertical we have

ξyN =
1

4πQ
V

∮

βy(s)k0(s) ds,

since a horizontally focusing quad becomes defocusing in the vertical plane.
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Residual chromaticity

If some magnetic field imperfections give rise to a perturbation of the kind

By =
∞
∑

n=2

bnx
n,

∂By

∂x
= 2b2x+ · · · , with x = ηxδ + xβ ,

then k−k0 in

(

1 0
−(k − k0)ds 1

)

=

(

1 0
k0δ ds 1

)

must be replaced by

(

−qG

p0
+ 2

q

p0
b2ηx

)

∆p

p
+ . . . , with G =

(

∂By

∂x

)

0

.

This yields the additional residual chromaticity in the horizontal plane:

ξxR =
1

4πQ
H

q

p0

∮

βx(s) 2b2(s)ηx(s) ds+ . . . .
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Combining ξxN and ξxR gives

ξx,total = − 1

4πQ
H

q

p

∮

βx(s) [G(s)− 2b2(s)ηx(s)] ds,

which may vanish, at least in principle, if

b2(s) =
G(s)

2ηx(s)
.

• Sextupole lenses are generally used to compensate the natural chromaticity.

In the vertical plane we find the residual chromaticity

ξyR = − 1

2πQ
V

q

p0

∮

βy(s)b2(s)ηx(s) ds.

since the field components of a normal sextupole are

By = b2(x
2 − y2), and Bx = 2b2xy.
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