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Matrix Example: Strong Focusing 

§  Consider a doublet of thin quadrupoles separated by drift L 

 
  
 
There is net focusing given by this alternating gradient system 
A fundamental point of optics, and of accelerator strong focusing 
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Strong Focusing: Another View 

For this to be focusing, x’ must have opposite sign of x where 
these are coordinates of transformation of incoming paraxial ray 

 
Equal strength doublet is net focusing under condition that each 

lens’ focal length is greater than distance between them 
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More Math: Hill’s Equation 

§  Let’s go back to our quadrupole equations of motion for 

What happens when we let the focusing K vary with s? 
Also assume K is periodic in s with some periodicity C 
 
 
This periodicity can be one revolution around the 
 accelerator or as small as one repeated “cell” 
 of the layout 

  (Such as a FODO cell in the previous slide) 
The simple harmonic oscillator equation with a 

 periodically varying spring constant K(s) is 
 known as Hill’s Equation 
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Hill’s Equation Solution Ansatz 

§  Solution is a quasi-periodic harmonic oscillator 

 
where w(s) is periodic in C but the phase Ψ(s) is not!! 
Substitute this educated guess (“ansatz”) to find 
 
 
 
 
 
For          and         to be independent of      , coefficients of the 

sin and cos terms must vanish identically   

x�� +K(s)x = 0 K ≡ 1

(Bρ)

�
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(s)

w(s)

x(s) = Aw(s) cos[Ψ(s) +Ψ0]

x� = Aw� cos[Ψ+Ψ0]−AwΨ� sin[Ψ+Ψ0]

x�� = A(w�� − wΨ�2) cos[Ψ+Ψ0]−A(2w�Ψ� + wΨ��) sin[Ψ+Ψ0]

x�� +K(s)x = −A(2w�Ψ� + wΨ��) sin(Ψ+Ψ0) +A(w�� − wΨ�2 +Kw) cos(Ψ+Ψ0) = 0
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Courant-Snyder Parameters 

§  Notice that in both equations               so we can scale 
this out and define a new set of functions, Courant-
Snyder Parameters or Twiss Parameters  

w�� − (k2/w3) +Kw = 0 ⇒ w3(w�� +Kw) = k2

w2 ∝ k

β(s) ≡ w2(s)

k
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2
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Towards The Matrix Solution 

§  What is the matrix for this Hill’s Equation solution? 

 

Take a derivative with respect to s to get  x� ≡ dx

ds

Now we can solve for A and B in terms of initial conditions  (x(0), x�(0))

x0 ≡ x(0) = A
�
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Hill’s Equation Matrix Solution 

A =
x0�
β(0)

B =
1�
β(0)

[β(0)x�
0 + α(0)x0]

We can write this down in a matrix form where                          
    is the betatron phase advance through one period C  
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�
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0
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0

�
x
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x
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Interesting Observations 

§      is independent of s: this is the betatron phase 
advance of this periodic system 

§  Determinant of matrix M is still 1! 
§  Looks like a rotation and some scaling 
§  M can be written down in a beautiful and deep way 
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Convenient Calculations 

§  If we know the transport matrix M, we can find the lattice 
parameters (periodic in C) 

γ(0) ≡ 1 + α2(0)

β(0)
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General Non-Periodic Transport Matrix 

§  We can parameterize a general non-periodic transport matrix 
from s1 to s2 using lattice parameters and  

§  This does not have a pretty form like the periodic matrix 
However both can be expressed as 
 
where the C and S terms are cosine-like and sine-like; the 

second row is the s-derivative of the first row! 
A common use of this matrix is the m12 term: 

M =

�
C S
C � S�
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Effect of angle kick 
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(C&M Eqn 5.52)
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(Deriving the Non-Periodic Transport Matrix) 

 
Calculate A, B in terms of initial conditions             and 
 
 
 
Substitute (A,B) and put into matrix form: 
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Review 
Hill

�
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Transport Matrix Stability Criteria 

§  For long systems (rings) we want               stable as 

§  If 2x2 M has eigenvectors             and eigenvalues             : 

§  M is also unimodular (det M=1) so                   with complex 
§  For        to remain bounded,    must be real 

§  We can always transform M into diagonal form with the 
eigenvalues on the diagonal (since det M=1); this does not 
change the trace of the matrix 

§  The stability requirement for these types of matrices is then 
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2
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Lattice Optics: FODO Lives! 

§  Most accelerator lattices are designed in modular ways 
§  Design and operational clarity, separation of functions 

§  One of the most common modules is a FODO module 
§  Alternating focusing and defocusing “strong” quadrupoles 
§  Spaces between are combinations of drifts and dipoles 
§  Strong quadrupoles dominate the focusing 
§  Periodicity is one FODO “cell” so we’ll investigate that 

motion 
§  Horizontal beam size largest at centers of focusing quads 
§  Vertical beam size largest at centers of defocusing quads 

cell 
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Periodic Example: FODO Cell Phase Advance 

§  Select periodicity between centers of focusing quads 
§  A natural periodicity if we want to calculate maximum β(s) 

§       only has real solutions (stability) if  
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Periodic Example: FODO Cell Beta Max/Min 

§  What is the maximum beta function,    ?  
§  A natural periodicity if we want to calculate maximum β(s) 

§  Follow a similar strategy reversing F/D quadrupoles to find 
the minimum β(s) within a FODO cell (center of D quad) 
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FODO Betatron Functions vs Phase Advance 

Generally want     /L small 
  Strong focusing 
  Smaller magnets 
  Less expensive accelerator 
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FODO Beta Function, Betatron Motion 

§  This is a picture of a FODO lattice, showing contours of 
since the particle motion goes like 
§  This also shows a particle oscillating through the lattice 
§  Note that            provides an “envelope” for particle oscillations 

•             is sometimes called the envelope function for the lattice 
§  Min beta is at defocusing quads, max beta is at focusing quads 
§  6.5 periodic FODO cells per betatron oscillation 

±
�

β(s)

design trajectory 

Betatron motion 
trajectory 

�
β(s)�

β(s)

(C&M Fig. 5.3)

⇒ µ = 360◦/6.5 ≈ 55◦

x(s) = A
�
β(s) cos[Ψ(s) +Ψ0]
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Example: RHIC FODO Lattice 

§  1/6 of one of two RHIC synchrotron rings, injection lattice 
§  FODO cell length is about L=30 m 
§  Phase advance per FODO cell is about  

Horizontal Vertical 

J	


low-beta insertion 

FODO 

low-beta insertion 

matching 

µ = 77◦ = 1.344 rad

β̂ =
L

sinµ

�
1 + sin

µ

2

�
≈ 53 m

β̌ =
L

sinµ

�
1− sin

µ

2

�
≈ 8.7 m

quadrupoles 
dipoles 
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Propagating Lattice Parameters 

§  If I have                   and I have the transport matrix       
that transports particles from            , how do I find the 
new lattice parameters                  ? 

 

(β,α, γ)(s1)

s1 → s2

M(s1, s2)

(β,α, γ)(s2)

M(s1, s1 + C) = I cosµ+ J sinµ =

�
cosµ+ α(s1) sinµ β(s1) sinµ

−γ(s1) sinµ cosµ− α(s1) sinµ

�
=

�
m11 m12

m21 m22

�




β(s2)
α(s2)
γ(s2)



 =




m2

11 −2m11m12 m2
12

−m11m21 m11m22 +m12m21 −m12m22

m2
21 −2m21m22 m2

22








β(s1)
α(s1)
γ(s1)





Homework J 
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Propagating Lattice Parameters 

§  If I have                   and I have the transport matrix       
that transports particles from            , how do I find the 
new lattice parameters                  ? 

 
The J(s) matrices at s1, s2 are related by 
 
 
Then expand, using det M=1 
 
 
 
 
 
 

 Quadratic: Lattice elements repeat themselves for 

(β,α, γ)(s1)

s1 → s2

M(s1, s2)

(β,α, γ)(s2)
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=
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J(s2) =

�
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�
=
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��
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M = ±I
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========== What’s the Ellipse? ========== 

§  Area of an ellipse that envelops a given percentage of the 
beam particles in phase space is related to the emittance 
  We can express this in terms of our lattice functions! 
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Invariants and Ellipses 

§  We assumed A was constant, an invariant of the motion 
A can be expressed in terms of initial coordinates to find 
 
This is known as the Courant-Snyder invariant: for all s, 
 
Similar to total energy of a simple harmonic oscillator 
      looks like an elliptical area in           phase space 
Our matrices look like scaled rotations (ellipses) in phase space 

quasi− periodic ansatz solution x(s) = A
�

β(s) cos[φ(s) + φ0]x = 0

W ≡ A2 = γ0x
2
0 + 2α0x0x

�
0 + β0x

�2
0

W (x, x�)

W = γ(s)x(s)2 + 2α(s)x(s)x�(s) + β(s)x�(s)2

s=s0 s=s0+C s=s0+2C s=s0+3C 
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Emittance 

§  The area of the ellipse inscribed by any given particle in 
phase space as it travels through our accelerator is called 
the emittance    : it is “constant” and given by 

Emittance is often quoted as the area of the ellipse that would 
contain a certain fraction of all (Gaussian) beam particles 

e.g. RMS emittance contains 39% of 2D beam particles 
Related to RMS beam size 
 
    RMS beam size depends on s!  
 
RMS emittance convention is fairly standard 
    for electron rings, with units of mm-mrad 

� = πW = π[γ(s)x(s)2 + 2α(s)x(s)x�(s) + β(s)x�(s)2]

�

σRMS

σRMS =
�
�β(s)
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Adiabatic Damping and Normalized Emittance 

§  But we introduce electric fields when we accelerate 
§  When we accelerate, invariant emittance is not invariant! 
§  We are defining areas in            phase space 
§  The definition of x doesn’t change as we accelerate 
§  But                                    does since      changes! 
§       scales with relativistic beta, gamma: 
§  This has the effect of compressing x’ phase space by 

 
 
§  Normalized emittance is the invariant in this case 

unnormalized emittance goes down as we accelerate 
This is called adiabatic damping, important in, e.g., linacs 

(x, x�)

x� ≡ dx/ds = px/p0 p0
p0 p0 ∝ βγ

βγ

�N ≡ βγ�
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Phase Space Ellipse Geography 

§  Now we can figure out some things from a phase space 
ellipse at a given s coordinate: 

x2 x1 

y1 
y2 

x1 =
�

W/γ(s) x2 =
�

Wβ(s)

y1 =
�
W/β(s) y2 =

�
Wγ(s)
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Rings and Tunes 

§  A synchrotron is by definition a periodic focusing system 
§  It is very likely made up of many smaller periodic regions too 
§  We can write down a periodic one-turn matrix as before 

§  We define tune as the total betatron phase advance in one 
revolution around a ring divided by the total angle 2π

M = I cosµ+ J sinµ I =

�
1 0
0 1

�
J(s0) ≡

�
α(0) β(0)
−γ(0) −α(0)

�

Qx,y =
∆µx,y

∆θ
=

1

2π

�
ds

βx,y(s)
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Tunes 

§  There are horizontal and vertical tunes 
§  turn by turn oscillation frequency 

§  Tunes are a direct indication of the amount of focusing in 
an accelerator 
§  Higher tune implies tighter focusing, lower 

§  Tunes are a critical parameter for accelerator performance 
§  Linear stability depends greatly on phase advance 
§  Resonant instabilities can occur when 
§  Often adjusted by changing groups of quadrupoles 

�βx,y(s)�

nQx +mQy = k

Mone turn = I cos(2πQ) + J sin(2πQ)
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6.2: Stability Diagrams 

§  Designers often want or need to change the focusing of 
the two transverse planes in a FODO structure 
§  What happens if the focusing/defocusing strengths differ? 

§  Recalculate the M matrix and use dimensionless quantities 

     then take the trace for stability conditions to find 

L/2 L/2

cell 

−2fF fD −2fF

F ≡ L

2fF
D ≡ L

2fD

cosµ = 1 +D − F − FD

2
sin2

µ

2
=

FD

4
+

F −D

2
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Stability Diagrams II 

§  For stability, we must have 
§  Using                                 , stability limits are where 

§  These translate to an a “necktie” stability diagram for FODO 

cosµ = 1 +D − F − FD

2
sin2

µ

2
=

FD

4
+

F −D

2

−1 < cosµ < 1

cosµ = 1− 2 sin2
µ

2

sin2
µ

2
= 0 sin2

µ

2
= 1

stable

unstable

unstable
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6.3: Dispersion 

§  There is one more important lattice parameter to discuss 
§  Dispersion        is defined as the change in particle position 

with fractional momentum offset 
 
 
Dispersion originates from momentum dependence of dipole bends 
Equivalent to separation of optical wavelengths in prism 

 

δ ≡ ∆p/p0

η(s)

White light with 
many frequencies 

(momenta) 
enters, all with 

same initial 
trajectories (x,x’) 

Different positions 
due to different bend 

angles of different 
wavelengths 
(frequencies, 
momenta) of 
incoming light 

x(s) = betatron + ηx(s)δ ηx(s) ≡
dx

dδ



33 T. Satogata / January 2013          USPAS Accelerator Physics 

(xkcd interlude) 

http://www.xkcd.org/964/ 

This is known in accelerator 
lattice design language as a 
“double bend achromat” 
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Dispersion 

§  Add explicit momentum dependence to equation of motion again 

 
Assume our ansatz solution and use initial conditions to find 
 
 
 
 
 
 
 
The trajectory has two parts:  
 

D(s) = S(s)

� s

0

C(τ)

ρ(τ)
dτ − C(s)

� s

0

S(τ)

ρ(τ)
dτ

x(s) = C(s)x0 + S(s)x�
0 +D(s)δ0

x�(s) = C �(s)x0 + S�(s)x�
0 +D�(s)δ0




x(s)
x�(s)
δ(s)



 =




C(s) S(s) D(s)
C �(s) S�(s) D�(s)
0 0 1








x0

x�
0

δ0





x(s) = betatron + ηx(s)δ ηx(s) ≡
dx

dδ

Particular solution of inhomogeneous 
differential equation with periodic ρ(s) 

x�� +K(s)x =
δ

ρ(s)
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Dispersion Continued 

§  Substituting and noting dispersion is periodic, 
 

§  If we take            we can solve this in a clever way 

§  Solving gives 




ηx(s)
η�x(s)
δ(s)



 =




C(s) S(s) D(s)
C �(s) S�(s) D�(s)
0 0 1








ηx(s)
η�x(s)
δ0





ηx(s+ C) = ηx(s)

δ0 = 1
�
ηx(s)
η�x(s)

�
=

�
C(s) S(s)
C �(s) S�(S)

��
ηx(s)
η�x(s)

�
+

�
D(s)
D�(s)

�
= M

�
ηx(s)
η�x(s)

�
+

�
D(s)
D�(s)

�

(I −M)

�
ηx(s)
η�x(s)

�
=

�
D(s)
D�(s)

�
⇒

�
ηx(s)
η�x(s)

�
= (I −M)−1

�
D(s)
D�(s)

�

achromat : D = D� = 0

η(s) =
[1− S�(s)]D(s) + S(s)D�(s)

2(1− cosµ)

η�(s) =
[1− C(s)]D�(s) + C �(s)D(s)

2(1− cosµ)
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FODO Cell Dispersion 

§  A periodic lattice without dipoles has no intrinsic dispersion 
§  Consider FODO with long dipoles and thin quadrupoles 

§  Each dipole has total length            so each cell is of length 
§  Assume a large accelerator with many FODO cells so   

cell 

ρθC/2 ρθC/2

ρθC/2

θC � 1

L = ρθC

Mdipole =




1 L

2
LθC
8

0 1 θC
2

0 0 1





MFODO = M−2fMdipoleMfMdipoleM−2f

M−2f =




1 0 0

− 1
2f 1 0
0 0 1



 Mf =




1 0 0
1
f 1 0
0 0 1





MFODO =





1− L2

8f2 L
�
1 + L

4f

�
L
2

�
1 + L

8f

�
θC

− L
4f2

�
1− L

4f

�
1− L2

8f2

�
1− L

8f − L2

32f2

�
θC

0 0 1





−1/2f 1/f −1/2f
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FODO Cell Dispersion 

§  Like    before, this choice of periodicity gives us 

§  Changing periodicity to defocusing quad centers gives    

β̂ η̂x

η�x = 0 at max

η̌x

θc =
2π

25
(25 FODO cells)

η̂x =
LθC
4

�
1 + 1

2 sin
µ
2

sin2 µ
2

�

η̌x =
LθC
4

�
1− 1

2 sin
µ
2

sin2 µ
2

�
η�x = 0 at min
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RHIC FODO Cell 

Horizontal 

Vertical 

Horizontal dispersion 

dipole dipole 

quadrupole 

half 
quadrupole 

half 
quadrupole 
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6.6: Dispersion Suppressor 

§  The FODO dispersion solution is non-zero everywhere 
§  But in straight sections we often want 

•  e.g. to keep beam small in wigglers/undulators in a light source 
§  We can “match” between these two conditions with with a 

dispersion suppressor, a non-periodic set of magnets 
that transforms FODO             to zero. 

§  Consider two FODO cells with different total bend angles 
•  Same quadrupole focusing to not disturb                much 
•  We want this to match                              to 
•               at ends to simplify periodic matrix   

ηx = η�x = 0

(ηx, η
�
x)

(ηx, η
�
x) = (η̂x, 0) (ηx, η

�
x) = (0, 0)

αx = 0

θ1/2 θ2/2θ1/2 θ2/2

θ1, θ2

1/f 1/f−1/f−1/2f −1/2f

βx, µx
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FODO Dispersion Suppressor 

D(s) =
L

2

�
1 +

L

8f

���
3− L2

4f2

�
θ1 + θ2

�

D�(s) =

�
1− L

8f
− L2

32f2

���
1− L2

4f2

�
θ1 + θ2

�multiply matrices ⇒

η̂x =
4f2

L

�
1 +

L

8f

�
(θ1 + θ2)

θ = θ1 + θ2 two cells, one FODO bend angle → reduced bending

FODO peak 
dispersion, 

slope η’=0 

Zero dispersion 
area 

slope η’=0 




0
0
1



 =




cos 2µx βx sin 2µx D(s)
− sin 2µx

βx
cos 2µx D�(s)

0 0 1








η̂x
0
1





θ1 =

�
1− 1

4 sin2 µ
2

�
θ θ2 =

�
1

4 sin2 µ
2

�
θ



41 T. Satogata / January 2013          USPAS Accelerator Physics 

FODO Cell Dispersion and Suppressor 

Dispersion-free Insertion 
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Mismatched Dispersion 
§  Someone in class asked what mismatched dispersion 

looks like 
§  For example, this is what happens when the second 

dispersion suppressor is eliminated and the dipole-free 
FODO cells run right up against the FODO cells with dipoles 

Dispersion
-free 

Insertion 

Dispersion 
Mismatch – 
not periodic! 
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6.5: π/2 Insertion 
§  Insertions and matching: modular accelerator design 
§  FODO sections have very regular spacings of quads 

§  Periodicity of quadrupoles => periodicity of focusing 
§  But we need some long quadrupole-free sections 

§  RF, injections, extraction, experiments, long instruments 

§  Can we design a “module” that fits in a FODO lattice with 
a long straight section, and matches to FODO optics? 
§  Yes: a minimal option is called the π/2 insertion 
§  Matching lattice functions (β,α)x,y at locations A,B 
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π/2 Insertion 

M =

�
1− l1l2

f2 2l1 + l2 − l21l2
f2

− l2
f2 1− l1l2

f2 − l2
f

�
=

�
cosµ+ α sinµ β sinµ

−γ sinµ cosµ− α sinµ

�

M =

�
1 l1
0 1

��
1 0
− 1

f 1

��
1 l2
0 1

��
1 0
1
f 1

��
1 l1
0 1

�

cosµ = 1− l1l2
f2

β sinµ =

�
2− l1l2

f2

�
l1 + l2 γ sinµ =

l2
f2

m11 −m22 comparison : l2 = αf sinµ

Maximum l2 when sinµ = 1, µ =
π

2
, cosµ = 0
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π/2 Insertion 

Design constraints : f =
α

γ
l2 =

α2

γ
l1 = β − l2

Mπ/2 =

�
α β
−γ −α

�
= J (recall J2 = −I)

π/2 insertion 

5m FODO drifts 

l1=7.95m, l2=8.75m 
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Multiple π/2 Insertions 

M2 = −I

M4 = I
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Multiple π/2 Insertions 

M2 = −I

M4 = I

Lattice elements repeat: see p. 22 
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Example: RHIC FODO Lattice Revisited 

§  Note modular design, including low-beta insertions 
§  Used for experimental collisions 
§  Minimum beam size σ (with zero dispersion) 

•  maximize luminosity 
§  Large s, beam size in “low beta quadrupoles” 
§  Other facilities also have longitudinal bunch compressors 

•  Minimize longitudinal beam size (bunch length) for, e.g, FELs 

Horizontal Vertical 

low-beta insertion 

FODO 

low-beta insertion 

matching 

quadrupoles dipoles 

Missing dipole dispersion suppressor 
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Review 
Hill

�
s equation x��

+K(s)x = 0

betatron phase advance

α(s) ≡ −1

2
β�(s)

γ(s) ≡ 1 + α(s)2

β(s)
β(s) = β(s+ C)

�
x
x�

�

s0+C

=

�
cosµ+ α(0) sinµ β(0) sinµ

−γ(0) sinµ cosµ− α(0) sinµ

��
x
x�

�

s0

µ =

� s0+C

s0

ds

β(s)
TrM = 2 cosµ

M = I cosµ+ J sinµ I =

�
1 0
0 1

�
J(s0) ≡

�
α(0) β(0)
−γ(0) −α(0)

�

J2 = −I ⇒ M = eJ(s)µ

Ψ(s) =

�
ds

β(s)

quasi− periodic ansatz solution x(s) = A
�
β(s) cos[Ψ(s) +Ψ0]
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General Non-Periodic Transport Matrix 

§  We can parameterize a general non-periodic transport matrix 
from s1 to s2 using lattice parameters and  

§  This does not have a pretty form like the periodic matrix 
However both can be expressed as 
 
where the C and S terms are cosine-like and sine-like; the 

second row is the s-derivative of the first row! 
A common use of this matrix is the m12 term: 

M =

�
C S
C � S�

�

Effect of angle kick 
on downstream position 

Ms1→s2 =





�
β(s2)
β(s1)

[cos∆Ψ+ α(s1) sin∆Ψ]
�
β(s1)β(s2) sin∆Ψ

− [α(s2)−α(s1)] cos∆Ψ+[1+α(s1)α(s2)] sin∆Ψ√
β(s1)β(s2)

�
β(s1)
β(s2)

[cos∆Ψ− α(s2) sin∆Ψ]





(C&M Eqn 5.52)

∆x(s2) =
�

β(s1)β(s2) sin(∆Ψ) x�(s1)

∆Ψ = Ψ(s2)−Ψ(s1)
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Design Orbit Perturbations 

§  Sometimes need a local change          to the design orbit 
§  But we really only get changes in angle        from magnets 
§  e.g. small dipole “corrector”: 
§  Changes to/corrections of design orbit from dipole correctors 
§  Linear errors add up via linear superposition   

Magnets RF Cavity 

design trajectory 

∆x(s)

∆x�

∆x� = BcorrectorLcorrector/(Bρ)

�
∆x(s2)
∆x(s1)

�
=

�
C S
C � S�

��
0

∆x�(s1)

�

∆x(s2) = ∆x�(s1)
�

β(s1)β(s2) sin∆φ12

∆x�(s2) = ∆x�(s1)

�
β(s1)

β(s2)
[cos∆φ12 − α(s2) sin∆φ12]
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∆x�(s1) ∆x�(s2)

Two-Bump 

§  But this orbit error now changes all later positions and 
angles 
§  Add another dipole corrector at a location where                    

At this point the distortion from the original dipole corrector is 
all x’ that we can cancel with the second dipole corrector. 

§  Called a two-bump: localized orbit distortion from two correctors 
§  But requires                     between correctors  

∆x(s2) = ∆x�(s1)
�

β(s1)β(s2) sin∆φ12

∆x�(s2) = ∆x�(s1)

�
β(s1)

β(s2)
[cos∆φ12 − α(s2) sin∆φ12]

∆φ12 = kπ

∆x�(s2) = ∆x�(s1)

�
β(s1)

β(s2)
+ angle from s2 dipole

∆φ12 = kπ
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Three-Bump 

§  A general local orbit distortion from three dipole correctors 
§  Constraint is that net orbit change from sum of all three kicks 

must be zero 

§  Bump amplitude 
§  Only three-bump requirement is that S1, S2 ≠ 0 

xb = S1∆x�
1
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Steering Error in Synchrotron Ring 
§  Short steering error       in a ring with periodic matrix M 

§  Solve for new periodic solution or design orbit (x0,x’0) 

§  Note that (x0=0,x’0=0) is not the periodic solution any more!  

∆x�

M

�
x0

x�
0

�
+

�
0

∆x�

�
=

�
x0

x�
0

�

�
x0

x�
0

�
= (I −M)−1

�
0

∆x�
0

�

(I −M)−1 = (I − e(2πQ)J)−1 =
�
[eπQJ

�
e−πQJ − eπQJ

��−1

= − (2J sin(πQ))−1 �eπQJ
�−1

=
1

2 sin(πQ)
(J cos(πQ) + I sin(πQ))

x0 =
∆x�

0

2
tan(πQ) → ∞ if Q = kπ

integer resonances 
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Focusing Error in Synchrotron Ring 

§  Short focusing error in a ring with periodic matrix M 
§  Now solve for Tr M to find effects on tune Q 

§  For small errors                               we can expand to find 

§  Quadrupole errors also cause resonances 
    when               : half-integer resonances   

Mnew = M

�
1 0
− 1

f 1

�

1

2
TrM = cos(2πQnew) = cos(2πQ0)−

1

2

β0

f
sin(2πQ0)

Qnew = Q0 +∆Q

∆Q ≈ 1

4π

β0

f

Q = k/2
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(Chromaticity Correction) 

§  How can we control chromaticity in our synchrotron ring? 
§  We need a way to connect momentum offset    to focusing 
§  Dispersion (momentum-dependent position) and sextupoles 

(nonlinear focusing depending on position) come to rescue 

 
§  Total chromaticity from all sources is then 

§  Strong focusing (large K) requires large sextupoles, nonlinearity!  

ξN ≡
�
∆Q

Q

�
/

�
∆p

p0

�
= − 1

4πQ

�
K(s)β(s) dsNatural chromaticity 

δ

x(s) = xbetatron(s) + ηx(s)δ

Sextupole B field By = b2x
2

By(sext) = b2[xbetatron(s) + ηx(s)δ]
2 ≈ b2x

2
betatron + 2b2xbetatron(s)ηx(s)δ

like a quadrupole K(s)! Nonlinear! 

ξ = − 1

4πQ

�
[K(s)− b2(s)ηx(s)]ds


