
Transition Energy

Angular Revolution frequency:

ω =
2π

τ
=

2πβc

L
,

Differentiating ln(ω) yields

dω

ω
= −dτ

τ
=
dβ

β
− dL

L
=

(

1

γ2
− αp

)

dp

p
.

���
���
���
���

Ring with 1
rf cavity.

Define phase slip factor:

ηtr =
1

γ2
− αp =

1

γ2
− 1

γ2tr
.

Note the sign flip (or transition) of
dω

dp
at ηtr = 0, i. e. when γ = γtr =

1√
αp

.
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Comment on convention

Note that a lot of people define ηtr with the opposite sign.

We follow the Ernest Courant’s convention from

E. D. Courant, “Computer Studies of Phase-Lock Acceleration”, International
Conference on High Energy Accelerators” 201 (1961).

Basically, since it’s called the phase-slip factor, we think it should be relative to
dω/ω rather than dτ/τ.

(Perhaps some folks consider it better to fall on your bum than on your face.)
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dω

ω
= −dτ

τ
=
dβ

β
− dL

L
= ηtr

dp

p
.

• Below transition energy, the change in frequency is

dominated by the
dβ

β
term.

• The particles sort of behave more nonrelativistically.

• As energy increases past transition, velocities approach speed of light, so

that the
dL

L
dominates.

• The particles sort of behave more ultrarelativistically.
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Voltage in the cavity as function of time:

Vrf(t) = V sin(ωrft+ φs).

To understand stability, let us assume for the present that

ωrf = ωrev =
2πβc

L
.

(It makes the pictures easier.)
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Phase staibility below transition

φs sφ +2π

τ−|dτ|
τ

τ+|dτ|

Vrf

φ=ωrf t

Below transition energy γ < γtr : ηtr =
1

γ2
− 1

γ2tr
> 0.

• Increasing energy – takes less time per turn:
dτ

τ
= −ηtr

dp

p
.

• Note: plot shows energy gain for synchronous particle on each turn.
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Phase stability above transition

φs φs+2π

τ+|dτ|
τ

τ−|dτ|

Vrf

φ=ωrf t

Above transition energy γ > γtr : ηtr =
1

γ2
− 1

γ2tr
< 0.

• Increasing energy – takes more time per turn:
dτ

τ
= −ηtr

dp

p
.
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Standing waves

A standing wave in a cavity can be considered as the superposition of traveling
waves in opposite directions:

V

2
sin(kz + ωrft)−

V

2
sin(kz − ωrft) =

V

2
[sin(kz) cos(ωrft) + cos(kz) sin(ωrft)]

− V

2
[sin(kz) cos(ωrft)− cos(kz) sin(ωrft)]

= V sin(kz) sin(ωrft).
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To quantify this a bit further, let’s make a few simplifying assumptions:

1) There is only one accelerating gap of length g, located at s = 0.

2) The accelerating gap is much shorter than the distance traveled by the beam
during one rf period, i. e., g ≪ βλrf .

3) The rf angular frequency is an integer multiple of the angular revolution
frequency, ωs, i. e., ωrf = hωs for some integer, h,
called the harmonic number.

4) The synchronous particle crosses the gap at time t = 0, when the rf phase
is φs, and the voltage across the gap is V sinφs.

5) As energy increases the revolution frequency ωs =
2πβc
L

increases,
so we must increase the rf frequency as the energy is ramped.
• This requires feedback on ωrf to keep L constant as B is ramped.
• Exception: when β ≃ 1, such as high energy e± rings.
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The energy gained by the synchronous particle per revolution is

∆Us = qV sinφs,

and the effective electric field may be written as

~E(s, t) = ŝ E(s, t) = ŝ V sin(ωrft+ φs)
∞
∑

n=−∞

δ(s− nL),

where L is the circumference of the synchronous particle’s orbit.

Fourier series: E(s, t) =
V

L
sin(ωrft+ φs)

∞
∑

n=−∞

cos

(

2πns

L

)

=
V

L

∞
∑

n=−∞

sin
[

ωs

(

ht− n

v
s
)

+ φs

]

,

where the synchronous particle’s velocity is v =
Lωs

2π
.
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The time that the synchronous particle passes a point s may be written

ts =
s

v
,

and the time for a generic particle

t = ts + δt,

where the generic particle lags behind the synchronous particle by δt.

The longitudinal (energy/momentum) oscillations will typically much slower
than the revolution period.

So we can average over one revolution period:

〈E(δt)〉 = V

L
sin(ωrf δt+ φs)

for the effective field seen by the generic particle with lag δt.
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A generic particle will then gain

∆U = qV sin(ωrfδt+ φs)

per turn which agrees with
∆Us = qV sinφs

for δt = 0.
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Define generic values (δ) relative to synchronoous values (subscript “s”):

total energy U = Us + δU.

momentum p = ps + δp.

angular frequency ω = ωs + δω.

revolution period τ = τs + δτ, with sign(δω) = −sign(δτ).

relative phase ϕ = δφ = φ− φs.

Again, the rf frequency is ωrf = hωs.

Energy gains per turn

δU = qV sinφ = V sin(φs + ϕ),

δUs = qV sinφs.
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Construct a difference equation

Energy difference (generic − synchrounous) at beginning of nth turn:

(δU)n = U − Us.

At beginning of the n+ 1th turn:

(δU)n+1 = (U +∆U)− (Us +∆Us).

Relative change in energy per turn:

∆(δU) = ∆U −∆Us = qV (sinφ− sinφs).

Turn it into a differential equation (divide by τs):

d(δU)

dt
≃ ∆(δU)

τs
=
qV

2π
ωs(sinφ− sinφs).
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Define the energy variable:

W = −δU
ωrf

= −U − Us

ωrf

.

dW

dt
=
qV

2π
(sinφs − sinφ).

Want to change the canonical variables:

(δt, −δU) → (ωrf δt, W ).

• Note that this preserves the phase-space areas.


 14�

USPAS: Lectures on Synchrotron Oscillations
Waldo MacKay January, 2013



∆ϕ ≃ dϕ

dt
τs = ωrf δt (1)

After one revolution the difference in arrival times (gen − sync)

∆(δt) = τ − τs = δτ = −ηtrτ
dp

p
, (2)

since
dτ

τ
= −ηtr

dp

p
.

Combining (1) and (2) from previous page:

dϕ

dt
≃ ∆ϕ

τs
=
ωrf

τs
∆(δt) = −ωrf

τs
ηtr

dp

p

U2 = p2c2 +m2c4 ⇒ 2U ∆U = 2pc2∆p

∆p

p
=

∆U

p2c2
=

∆U

U

U2

p2c2
=

1

β2

∆U

U

=
1

β2Us

(−ωrfW ).
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Longitudinal oscillation equation

dϕ

dt
= −ω

2
rfηtr
β2Us

W.

ϕ̈ =
d2ϕ

dt2
= −ω

2
rfηtr
β2Us

dW

dt

= −ω
2
rfηtr
β2Us

qV

2πh
(sinφs − sinφ).

Equation of longitudinal phase oscillation relative to synchronous particle:

ϕ̈+
hω2

sηtrqV

2πβ2Us

(sinφs − sinφ) = 0.

• However, if the energy steps from the cavity are large enough, then we
should consider using difference equations rather than the approximation of
the differential equations. (See further on.)
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Small oscillations

For small amplitudes: sinφ = sin(φs + ϕ) ≃ ϕ cosφs + sinφs.

0 = ϕ̈+
hω2

sηtrqV

2πβ2Us

(sinφs − sinφ) ≃ ϕ̈+

(

hω2
sηtr cosφs
2πβ2γ

qV

mc2

)

ϕ.

Define the angular synchrotron oscillation frequency

Ωs = ωs

√

hηtr cosφs
2πβ2γ

qV

mc2
.

Synchrotron tune: Qs =
Ωs

ωs

=

√

hηtr cosφs
2πβ2γ

qV

mc2
.

• For oscillations motion about the synchronous phase
ηtr cosφs must remain positive (or at least have the same sign as qV ).

• Since ηtr flips sign when the beam accelerates through transition,
the synchrounous phase must shift to maintain stability (e. g. φs → π−φs).
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Qs and ηtr vs γ for RHIC with 197Au+79 beam; Vrf = 600 kV.

−0.001
 0

 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

 10  15  20  25  30

γ

φs =  15.0°
γtr =  22.8

qV =  47.4 MeV

  h =  360
mc2 =  183 GeV

Qs(γ, φs)     
Qs(γ, π−φs)

ηtr

• Notice how the synchrotron frequency drops to zero at transition.

• Longitudinal phase-space becomes almost frozen around transition.
• frev ≃ 78 kHz. Cavity filling is a few microseconds.
• Can shift φs in a few turns.
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Large amplitude oscillations

ϕ̈+
Ω2

s

cosφs
[sin(ϕ+ φs)− sinφs] = 0.

• Mechanical analog: the biased pendulum.

• Weight M swings from pivoting cylinder.
• String wrapped around cylinder holds m.

φ̈+
g

l

(

sinφ− ma

Ml

)

= 0.

sinφs =
ma

Ml
,

Ω2
s

cosφs
=
g

l
.

m

M

l

φ

a

• Equilibrium for φ = φs = sin−1
(ma

Ml

)

.
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φ̈+
Ω2

s

cosφs
(sinφ− sinφs) = 0. (Of course ϕ̇ = φ̇.)

Notice that
d(φ̇2)

dt
= 2φ̈

dφ

dt
. So

d
(

φ̇2
)

=
2Ω2

s

cosφs
(− sinφ dφ) + 2Ω2

s tanφs dφ,

which after integration becomes

1

Ωs

φ̇ = ±
√

2(cosφ− cosφ0)

cosφs
+ 2(φ− φ0) tanφs +

1

Ω2
s

φ̇20 ,

where φ0 is the phase at t = 0.
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• If φs = 0, then it is a normal unbiased pendulum (with m = 0).
• Stable fixed point at the bottom, i. e. (0, 0).
• Unstable fixed points at (φ, φ̇) = (±π, 0).

• If |φs| < π, then we have
• a stable fixed point at (φs, 0),
• an unstable fixed point at (φ1, 0) = (π − φs, 0),

• If φ is just less than π − φs the torque is restorative,
i. e. Mgl sinφ > mga.

• If φ is just a bit more than π−φs, the net torque is away from φs,
i. e. mga > Mgl sinφ.

• Notice that the stable region shrinks to zero as φs increases to
π

2
.

For stability we must have |φs| <
π

2
.

• A second unstable fixed point (φ2, 0) may be obtained from

1

Ωs

φ̇2 = ±
√

2(cosφ2 − cosφ1)

cosφs
+ 2(φ2 − φ1) tanφs +

1

Ω2
s

φ̇21 .
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Squaring gives and setting φ̇1 = φ̇2 = 0,

0 =
2(cosφ2 − cosφ1)

cosφs
+ 2(φ2 − φ1) tanφs,

and with φ1 = π − φs, we find the transcendental equation:

(

1

Ωs

φ̇2

)2

= 0 = cosφ2 + cosφs + (φ2 + φs − π) sinφs,

It can be solved numerically.

In this example:

φs = 30◦,

φ1 = φs,

φ2 ≃ −36.7◦.

−4

−3

−2

−1

 0

 1

 2

−3 −2 −1  0  1  2  3

(1
/Ω

s 
 d

φ/
dt

)2

φ

ufp (φ1,0)ufp (φ2,0)

φs
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Separatrices and buckets

−3

−2

−1

 0

 1

 2

 3

−6 −4 −2  0  2  4  6

1/
Ω

s 
 d

φ/
dt

φ

Stationary buckets

• φs = 0.

• Separatrix in red.

• Elliptical flow inside separatrix.

• Particles outside not contianed.

−4

−3

−2

−1

 0

 1

 2

 3

 4

−6 −4 −2  0  2  4  6

1/
Ω

s 
 d

φ/
dt

φ

Accelerating buckets

• φs = 30◦.

• Separatrix in red.

• Elliptical flow inside separatrix.

• Particles outside not contained.
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−0.2

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

−300 −200 −100  0  100  200  300

W
 [e

v 
s]

φ [degrees]

φs= 0°

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

−300 −200 −100  0  100  200  300

W
 [e

v 
s]

φ [degrees]

φs= 30°

dW

dt
=
qV

2π
[sinφs − sin(ϕ+ φs)],

dϕ

dt
= −ω

2
rfηtr
β2Us

W.

Integrated as difference equations:

Wj+1 =Wj +
qV

2π
[sinφs − sin(ϕj + φs)],

ϕj+1 = ϕj −
ω2
rfηtr
β2Us

Wj+1.
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Wrong way to integrate

When we write simulation codes to integrate

dφ

dt
= αW, and

dW

dt
= −βφ,

where α and β are constants. Making a 2nd order differential equation:

d2φ

dt2
+ αβ φ = 0,

we know that the solution is simple harmonic motion.
For numerical integration we might try the difference equations:

φn+1 = φn + αWn ∆t,

Wn+1 =Wn − βφn ∆t.

What’s wrong with this?
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It becomes obvious when we write the difference equations in matrix form:

(

φn+1

Wn+1

)

=

(

1 α∆t
−β∆t 1

)(

φn
Wn

)

= M

(

φn
Wn

)

We find

|M| = 1 + αβ(∆t)2 6= 1.

• Instead of an ellipse in the (φ,W )-plane,
we get a spiral.

• If αβ > 0, it spirals outward.

• if αβ < 0, it spirals inward to a point.

φ

Wα ∆t = 0.1
β ∆t = 0.05

200 steps

• In the limit of ∆t→ 0, we should get the correct answer.
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Better way: Leapfrog integration

• Stagger the integration steps:

φ 1

2

−→ φ1+ 1

2

−→ φ2+ 1

2

W1 −→ W2 −→ W3

This is actually more like what we expect for a ring with a single cavity:
1. Go around the ring from downstream of cavity to upstream.
2. Then go through the cavity.

(

φn+ 1

2

Wn+1

)

=

(

1 0
−β∆t 1

)(

1 α∆t
0 1

)(

φn− 1

2

Wn

)

=

(

1 α∆t
−β∆t 1− αβ∆t2

)(

φn− 1

2

Wn

)

= M

(

φn− 1

2

Wn

)

,

Now |M| = 1.
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Cranking up the rf voltage for the simulation for φs = 0 (back on p. 24), we get
the distorted buckets:

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−300 −200 −100  0  100  200  300

W
 [e

v 
s]
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φs= 0°

100 times the voltage.

−15
−10
−5
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 5

 10
 15
 20
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 35
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−300 −200 −100  0  100  200  300

W
 [e

v 
s]

φ [degrees]

φs= 0°

3000 times the voltage.
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Hamiltonian formalism

Simple method to concoct a Hamiltonian: Work backwards from equations of
motion.

dW

dt
= −∂H

∂ϕ
=

qV

2πh
[sinφs − sin(φs + ϕ)],

dϕ

dt
=

∂H

∂W
=
ω2
rfηtr
β2Us

W.

An obvious solution to this pair of equations is

H =
1

2

ω2
rfηtr
β2Us

W 2 − qV

2πh
[ϕ sinφs + cos(ϕ+ φs)].

For small amplitudes this becomes

H ≃ 1

2

ω2
rfηtr
β2Us

W 2 +
qV cosφs

4πh
ϕ2 + constant,

which is just the Hamiltonian for a harmonic oscillator.
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A much more complicated but rigorous method is given in CM§ 7.6.

• It includes terms for synchro-betatron coupling via the dispersion functions
ηx and η′x:

H2 = −ps +
psK

2
x2β +

p2β
2ps

+
ω2
rf

2β3Usc

(

1

γ2
− ηx

ρ

)

W 2

− qV

ωrf

∞
∑

n=−∞

δ(s− nL) cos

[

φs + ϕ+
2πhs

L
− ωrfUs

(psc)2
(ηxpβ − psη

′

xxβ)

]

− qV

Lωrf

sinφs

[

ϕ− ωrfUs

(psc)2
(ηxpβ − psη

′

xxβ)

]

.

• The details of the derivation are there, but it is more time consuming than
we want to go into for this course.

• When things get complicated, folks frequently use tracking codes to study
particular accelerators.
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Adiabatic invariant

In the adiabatic approximation, the Poincaré-Cartan invariant gives:

IL =

∮

pdq =

∮

Wdφ =

∮

W
dφ

dt
dt,

where the integral
∮

is over one cycle of the synchrotron oscillations.

Recalling that
dϕ

dt
≃ ω2

rfηtr
β2Us

W , this becomes

IL =
h2ηtrω

2
s

β2γmc2

∮

W 2dt.
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Invariant for small oscillations

Small amplitude oscillations:

ϕ(t) = ϕm sin(Ωst+ ψ0),

W (t) =Wm cos(Ωst+ ψ0),

with

Wm =
Ωsβ

2Us

ω2
rf
ηtr

ϕm, since W =
β2Us

ω2
rf
ηtr

ϕ̇.

The invariant may now be written as

IL =
h2ω2

sηtr
β2Us

∮

β2Us

h2ω2
sηtr

ϕmWm cos2(Ωst+ ψ0) Ωs dt = πϕmWm.

We may also write this as

IL =
πω2

rfηtr
Ωsβ2Us

W 2
m.

Squaring IL gives

W 4
m =

qV cosφsβ
2Us

2π3hω2
rf
ηtr

I2L.
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Stationary bucket

Vrf

φ=ωrf t

φs=0

τ

τ−|dτ|

τ+|dτ|

Phase stability below transition with no acceleration: φs = 0.
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Recalling

1

Ωs

φ̇ = ±
√

2(cosφ− cosφ0)

cosφs
+ 2(φ− φ0) tanφs +

1

Ω2
s

φ̇20 ,

and with φs = 0 for an unaccelerated synchronous particle, we obtain
1

Ωs

φ̇ = ±
√

2(cosφ− cosφm),

where I have taken φ̇0 = 0 at t = 0.
For φm = π,

1

Ωs

φ̇ = ±
√

2(cosφ+ 1) = 2 cos
φ

2
.

Small amplitudes:

Ωs = ωs

√

h|ηtr|
2πβ2γ

qV

mc2
.

1
Ωs

dφ
dt

φ
π−π

φm−φm
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Reintroduce the canonical variable W :

1

Ωs

dφ

dt
=

2πc

L

√

2πh3ηtr
UsqV cosφs

W.

Equation of separatrix:

W = ± L

πc

√

qV Us

2πh3|ηtr|
cos

φ

2
.

Area of stationary bucket:

Abk = 2

∫ π

−π

W dφ =
8L

πc

√

qV Us

2πh3|ηtr|
.

Phase oscillation equation becomes:

W = ±Abk

8

√

cos2
φ

2
− cos2

φm
2
.

W

φ
π−π

Wbk

φm−φm

Wb

Wb =
Abk

8
sin

φm
2
.

∆p

p
=

1

β2Us

(−ωrfW ). (See p. 15.)

|Wb| =
β2Us

ωrf

δp

p
,
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Momentum spread gets big at transition

 0

 5

 10

 15

 20

 10  20  30  40  50  60  70  80  90  100

W
m

γ

γt

On the other hand the bunch length gets short at transition, since

IL = πϕmWm.

Note: Book is a wee bit inconsistent: § 7.7 uses Wm whereas § 7.8 uses Wb for
the bunch height. (I’ll have to fix that for the next printing.)
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Direction of phase space rotation

Since φ̇ =
ω2
rf

β2Us

ηtrW, we find that:

1. Below transition with ηtr > 0, φ increases for W > 0, so a stable particle
will move in a clockwise direction about the stable fixed point (φs, 0).

2. Above transition with ηtr < 0, φ decreases for W > 0, so a stable particle
will move in a counterclockwise direction about the stable fixed point (φs, 0).

W

φ
π−π

ηtr>0

Below W

φ
π−π

ηtr<0

Above
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Note to Waldo: Do some demos with split2.
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Measurement of the beam current

• Wall current monitors can measure the bunched current.
• Weber’s design gives flat response up to 6 GHz.

• DC current transformers (DCCT): measure unbunched cirulating current.
• Better than a part in 104 accuracy.

• R. C. Weber,“Longitudinal Emittance: An Introduction to the Concept and
Survey of Meaesurement Techniques Including Design of a Wall Current
Monitor”, in Accelerator Instrumentation, AIP Conf. Proc. 212, 85 (1989).
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Wall current monitors (WCM)

• Beam (light blue) moving right with image charges (red) on beam pipe walls.

• Ceramic gap (gold) in pipe maintains vacuum integrity.

• Voltage measured across resisters. Ferrite (blue) with outer can enhance
signal.
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DC current transformers (DCCT)

• Measures unbunched beam.

• Used for dc power supplies.

(Figs 6& 7 from R. C. Weber.)
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RHIC injection with no rf

frf = 28.01653 MHz.

h = 360.

fs =
frf
h

= 77.824 kHz.

L = 3833.845 m.

c = 299792458 m/s.

β =
fsL

c
= 0.99523.

γ = 10.255.

• Ah. Must be gold ions.
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RHIC rf cavities

• 28 MHz accelerating (h = 360). • 200 MHz storage (h = 2520).
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RHIC commissioning: Transition Xing


 44�

USPAS: Lectures on Synchrotron Oscillations
Waldo MacKay January, 2013



AGS transition crossing
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Real soliton
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Is it a soliton?

RHIC injection.
• Protons.
• after 40 minutes!

High intensity bunch.
Effect of space charge.
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RHIC colliding beams
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Debunching and rebunching in AGS
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Booster and AGS merging
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