Transition Energy

Angular Revolution frequency:

2r  2wfPc
W = —
T L’ -
Differentiating In(w) yields
dw dr df dL 1 dp
w 7 8 L ?—% 'y Ring with 1
rf cavity.
Define phase slip factor:
1 1 1
7’] r = —& — Xy = —— — ——.
T T 42
dw

Note the sign flip (or transition) of - at ngy =0, i.e. when =y =
p

1
Vo,
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Comment on convention

Note that a lot of people define 1, with the opposite sign.
We follow the Ernest Courant’s convention from

E. D. Courant, “Computer Studies of Phase-Lock Acceleration”, International
Conference on High Energy Accelerators” 201 (1961).

Basically, since it’s called the phase-slip factor, we think it should be relative to
dw/w rather than dr /7.

(Perhaps some folks consider it better to fall on your bum than on your face.)
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do_ dr_d3_dn_ dp
w T B L_mrp'

e Below transition energy, the change in frequency is

d
dominated by the F term.

e The particles sort of behave more nonrelativistically.

e As energy increases past transition, velocities approach speed of light, so

that the T dominates.

e The particles sort of behave more ultrarelativistically.
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Voltage in the cavity as function of time:
V}f(t) =V Sin(wrft + qbs)

To understand stability, let us assume for the present that

2T fc
Wrf = Wrev — .

L

(It makes the pictures easier.)
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Phase staibility below transition

| [ o=
OA T =yt

.. 1 1
Below transition energy v < Yir Nr = —< — —3 > 0
8 f}/tr
, , dr dp
e Increasing energy — takes less time per turn: — = —Thtr —-
T p
e Note: plot shows energy gain for synchronous particle on each turn.
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Phase stability above transition

Vrf
T+|dt| N
\ : \
| T-df .
: / : \ / =yt
Qs Q21
" 1 1
Above transition energy V> Yip e = — — —5 < 0.
Y Ver
. , dt dp
e Increasing energy — takes more time per turn: — = —Thtr —-
T
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Standing waves

A standing wave in a cavity can be considered as the superposition of traveling
waves in opposite directions:

v

5 sin(kz 4+ wyet) — % sin(kz — wyet) = sin(kz) cos(wyt) + cos(kz) sin(wyet)]

14
2
v

5 sin(kz) cos(wyet) — cos(kz) sin(wyet)]

= V sin(kz) sin(w.st).
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To quantify this a bit further, let’s make a few simplifying assumptions:

There is only one accelerating gap of length g, located at s = 0.

The accelerating gap is much shorter than the distance traveled by the beam
during one rf period, i. e., g < BAt.

The rf angular frequency is an integer multiple of the angular revolution
frequency, wg, i. e., wre = hwy for some integer, h,
called the harmonic number.

The synchronous particle crosses the gap at time ¢ = 0, when the rf phase
is ¢4, and the voltage across the gap is V sin ¢.

. . 2 .
As energy increases the revolution frequency ws = ﬂf © increases,

so we must increase the rf frequency as the energy is ramped.
e This requires feedback on w,t to keep L constant as B is ramped.
e Exception: when 3 ~ 1, such as high energy e® rings.
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The energy gained by the synchronous particle per revolution is
AUy = qV sin ¢,
and the effective electric field may be written as

—

E(s,t) = § E(s,t) = 8§V sin(w,t + ¢s) Z d(s —nlL),

n=—aoo

where L is the circumference of the synchronous particle’s orbit.

V >° 9
Fourier series: E(s,t) = = sin(wyst + ds) Z oS ( 7Tn8)

4

L

Luwy
o
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The time that the synchronous particle passes a point s may be written

S
ts = N
v
and the time for a generic particle

t =15+ ot,

where the generic particle lags behind the synchronous particle by 9t.

The longitudinal (energy /momentum) oscillations will typically much slower
than the revolution period.

So we can average over one revolution period:

(E(dt)) = % sin(wyt 0t + @)

for the effective field seen by the generic particle with lag ot.
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A generic particle will then gain
AU = qV sin(wydt + ¢s)

per turn which agrees with

AUy = qV sin ¢
for 6t = 0.
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Define generic values (9) relative to synchronoous values (subscript “s”):

total energy U = Uz + 0U.
momentum p = ps + Op.
angular frequency w = ws + dw.
revolution period 7 =75+ 07, with sign(dw) = —sign(d7).

relative phase ¢ =09 = ¢ — ¢5.

Again, the rf frequency is wys = hws.
Energy gains per turn

oU = qV sin ¢ = Vsin(¢s + @),
0Ug = qV sin ¢s.
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Construct a difference equation

Energy difference (generic — synchrounous) at beginning of n*" turn:
(6U),, = U — Us.
At beginning of the n + 1* turn:
(6U)pr1 = (U + AU) — (Us + AU5).
Relative change in energy per turn:
A(OU) = AU — AUy = qV (sin ¢ — sin ¢y).

Turn it into a differential equation (divide by 7s):

d(sU)  AGU) gV
d

— -~ = —ws(sin ¢ — sin ¢y).
t T 2

1YY USPAS: Lectures on Synchrotron Oscillations
Isl”a Waldo MacKay January, 2013
J



Define the energy variable:

W:_(S_U:_U—US
Wrf Wrf

aw — qV . :

= %(smgbs — sin ¢).

Want to change the canonical variables:

(6t, —0U) — (wydt, W).

e Note that this preserves the phase-space areas.
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d
A0t) =T —Ts =0T = =N T —p, (2)
since
dr dp
— = —Thtr —-
T p

Combining (1) and (2) from previous page:

d A r r d
Cf: SOZEA(&):_EHH—Z)
t Ts Ts Ts

U? =p?c® + mct = 2UAU = 2pc® Ap
Ap AU AU U? 1 AU

p  p22 U p202252 U

1
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Longitudinal oscillation equation

d_g& L w?fntr

- w.
dt 320,

_ d2_g0 _ _wffntr dwW
a2z U, di

_ _wffntr qV

B2U4 2mh

B

(sin ¢s — sin ).

Equation of longitudinal phase oscillation relative to synchronous particle:

hw.?ntrqv
21 52U,

© + (sin ¢s — sin @) = 0.

e However, if the energy steps from the cavity are large enough, then we
should consider using difference equations rather than the approximation of
the differential equations. (See further on.)
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Small oscillations

For small amplitudes: sin ¢ = sin(¢s + @) >~ Y cos ¢s + sin @Ps.

hwgmr cos s qV
2wB2y  mc? 7

hw277tqu
0= & :
P 27 52U,

(sin ¢ — sin @) >~ ¢ + (

Define the angular synchrotron oscillation frequency

Q. — u)S\/hmr cosps qV

232y mce2

Q Ay V
Synchrotron tune: Qs = — = T COS $s 4 :
W 2w 52y mc?

e For oscillations motion about the synchronous phase
Ner COS s must remain positive (or at least have the same sign as ¢V).

e Since 7, flips sign when the beam accelerates through transition,
the synchrounous phase must shift to maintain stability (e. g. ¢s — m— ¢s).
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Qs and 7, vs v for RHIC with Y7"Au™™ beam; Vi = 600 kV.

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0
—0.001

|
Qly, @ — |
Qs(yl T[_(Q)
Ny —— 7
¢;= 15.0° i
Yy = 22.8 il
qV = 47.4 MeV
mc = 183 GeV |
h= 360 7
| | |
10 15 20 25
y

30

e Notice how the synchrotron frequency drops to zero at transition.

e Longitudinal phase-space becomes almost frozen around transition.
o f.ov >~ 78 kHz. Cavity filling is a few microseconds.

e Can shift ¢, in a few turns.

il
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Large amplitude oscillations

2

P+ COS‘;S sin(¢ + ¢5) — sing,| = 0.

e Mechanical analog: the biased pendulum.
e Weight M swings from pivoting cylinder.
e String wrapped around cylinder holds m.

[ Ml
ma

Smgbs—m,
Q0 g
cosps

Equilibrium for ¢ = ¢, =sin~" (25 ).
e Equilibrium for ¢ = ¢ sin A7
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b + % (sin ¢ — sin ¢5) = 0. (Of course ¢ = ¢.)

COS Qg
. d(¢?) _ - do
Notice that = 20 e SO
- 2022
2\ _ S (o 2
d (qb ) = s o (— im0 do) + 207 tan g, do,

which after integration becomes

1¢::|:\/2(COS¢_COS¢O)—|—2(¢¢0)tan§b8+g212§.b%,

COS Qg

where ¢g is the phase at t = 0.
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o If s =0, then it is a normal unbiased pendulum (with m = 0).
e Stable fixed point at the bottom, i. e. (0,0).
e Unstable fixed points at (¢, @) = (£7,0).

o If |¢s| < m, then we have
e a stable fixed point at (¢, 0),
e an unstable fixed point at (¢1,0) = (7 — ¢s,0),
o If ¢ is just less than m — ¢, the torque is restorative,
i. e. Mglsing¢ > mga.
o If ¢ is just a bit more than m — ¢, the net torque is away from ¢,
i. e. mga > Mglsin ¢.

-
e Notice that the stable region shrinks to zero as ¢, increases to 5"

m
For stability we must have |¢s| < %

e A second unstable fixed point (¢2,0) may be obtained from

COS Qg
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Squaring gives and setting q51 = q52 =0,

2(cos ¢ — cos ¢1)

0=
COS Qg

+ 2(¢2 — ¢1) tan ¢,

and with ¢1 = m — ¢, we find the transcendental equation:

2
(Qi ¢2> =0 = cos ¢z + cos s + (P2 + @5 — 7) sin @,

It can be solved numerically. 2 ' ' ' I | |
In this example: 1r -
L 0 / +
by = 30°, g ufp (©2,0) ufp (1.0
¢1 — ¢S) g -2k -
bo = —36.7°. . _
_4 ] ] ] ] ] ] ]
-3 -2 -1 0 ¢ 1 2 3
¢
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Separatrices and buckets

Stationary buckets
® ¢s = 0.

e Separatrix in red.

e Elliptical flow inside separatrix.

- 0 ) . 6 e Particles outside not contianed.
Q
4 T T T T T T
3| Accelerating buckets
2 -
5 1F ® ¢5 = 30°.
N
d [ e Separatrix in red.
:z e Elliptical flow inside separatrix.
I 0 ) . . e Particles outside not contained.
Q
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0.2 — . . . . . 1 03
D1 -
0.1 0.2
—  0.05 — 0.5
3 0 3  o1f
= 005 = o05p-
-0.1 0
-0.15 -0.05
_02 | | | | | | | _01
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
¢ [degrees] ¢ [degrees]
dw  qV _ . .
—— = —[sin @5 — sin(yp + ¢
dt 27 | i ( )l
2
do _ Wil W
dt 52U,
Integrated as difference equations:
qV . . .
Wi =W, + g[sm bs — sin(p; + ¢s)],
2
WeeTltr

i+t = 05T Wit
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Wrong way to integrate

When we write simulation codes to integrate

dob AW
E = OCW, and E = —6¢,

where o and /3 are constants. Making a 2™¢ order differential equation:

d?¢
WJFO&ﬁﬁb:Oa

we know that the solution is simple harmonic motion.
For numerical integration we might try the difference equations:

On+1 = Pn +aWy, At,
Wn+1 — Wn — ngn At.

What’s wrong with this?
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It becomes obvious when we write the difference equations in matrix form:

(¢n+1>:( 1 ozAt> (cbn) :M(qﬁn)
Wn—i—l _BAt 1 Wn Wn

aAt=0.1 W 200 steps
We find B At =0.05

M| = 1+ ap(At)? # 1. PR S

e Instead of an ellipse in the (¢, W)-plane,
we get a spiral.

o If a8 > 0, it spirals outward.

o if a8 < 0, it spirals inward to a point.

e In the limit of At — 0, we should get the correct answer.
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Better way: Leapfrog integration

e Stagger the integration steps:

¢

— ¢1+% — ¢2+%
W1 — W2 — W3

N

This is actually more like what we expect for a ring with a single cavity:
1. Go around the ring from downstream of cavity to upstream.
2. Then go through the cavity.

boir Y _ (1 0\ (1 aAt) (¢,
W) \=pAt 1) o0 1 W,

B 1 a At ¢n_% M Py —
— \=BAt 1—aBAt? W, | W, |’
Now |M| = 1.
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Cranking up the rf voltage for the simulation for ¢5 = 0 (back on p. 24), we get
the distorted buckets:

W [ev s]
W [ev s]

-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
¢ [degrees] ¢ [degrees]

100 times the voltage. 3000 times the voltage.
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Hamiltonian formalism

Simple method to concoct a Hamiltonian: Work backwards from equations of
motion.
aw — o0H ¢V
dt  O0p  27h

d_go  0H erntrW
dt oW  B2U,

[Sln ng o Sln(gbs + 90)]

An obvious solution to this pair of equations is

1 r Vi
Lty L [ipsin g + cos(p + 6)].

H =
2 32U, 2mh

For small amplitudes this becomes

1 v V
Wl W2+ qV cos o ©* + constant,

H ~
2 52U, A7h

which is just the Hamiltonian for a harmonic oscillator.
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A much more complicated but rigorous method is given in CM§3 7.6.

e [t includes terms for synchro-betatron coupling via the dispersion functions

n. and 7.
2 2
psi o D3 Wyt 1 Tz 2
H = — S - W
2 s T T gy Tl \7 p
JV = o2rhs  wptl, ,
_ 5(s — nlL _ _
B 3 B nbyeos ot T = O Gups
. sin ¢ —wrfUS( Pg — PsNyTp)
Lyt ¥ (psc)? b Hatl|

e The details of the derivation are there, but it is more time consuming than
we want to go into for this course.

e When things get complicated, folks frequently use tracking codes to study
particular accelerators.
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Adiabatic invariant

In the adiabatic approximation, the Poincaré-Cartan invariant gives:

IL:%pdq:%deb:fW%dt,

where the integral ¢ is over one cycle of the synchrotron oscillations.

d 2 e
Recalling that d_f ~ ‘;rzfgi

W,  this becomes

ntrw 2
dt.
~ Byme? 7{ W
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Invariant for small oscillations

Small amplitude oscillations:

gp(t) = Om Sin(QSt + ¢O>a
W(t) = Wi, cos(Qst + tho),

with 0 32 ,
S US . Us

W = 2’; Om s since W = 52
wrf Ttr wrf Ttr

The invariant may now be written as

h2 2 . 2U
o= B(;Jifm ]{ hQﬁw—Qn@me COS2(Qst + o) Qs dt = TP Wi,
S tr

We may also write this as

Iy = Tk W,
Q62U
Squaring [;, gives
qV cos ¢s3°Us
W, = I7.
m 273 hw 2 Ny L
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Stationary bucket

Vrf

| P=uyt

Phase stability below transition with no acceleration: ¢, = 0.
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Recalling

1. 2(cos ¢ — cos ¢ 1

and with ¢s = 0 for an unaccelerated synchronous particle, we obtain

1 1d
Q—S¢: lL\/Q(COSCb—COSCbm)a ng:p
where I have taken éo =0att=0.
For ¢, =,
1 . _ ¢
—gb::t\/2(cosgb+1):2cos?. l Wk
2 2 | |
Small litudes: 1 ‘
mall amplitudes “q. @,

0. — h‘ntr‘ qV
8 - ws 0
2732y mc?
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Reintroduce the canonical variable W:

w.
UsqV cos ¢

1 dp 2mc 27 h3 My
Q,dt L

Equation of separatrix:

L qVUs 1)
W =+ —.
7TC\/27Th3|77tr| “ 9

Area of stationary bucket:

A m
W, = 22 sin O
m 8L qV U,
- me \| 2mh3 N | D @2(]8( wetW).  (See p )
2
Phase oscillation equation becomes: W| = B7Us op :
Wrt P
Apk ¢ Prm
W 3 COS 5 COS 9

1YY USPAS: Lectures on Synchrotron Oscillations
Isu’s Waldo MacKay January, 2013
J



Momentum spread gets big at transition

20 | | | | | | | |
15 |- .
;E 10 .
5_ .
Wi
O Il | | | | | | |

10 20 30 40 50 60 /0 80 90 100

On the other hand the bunch length gets short at transition, since
IL = TTEm Wm.

Note: Book is a wee bit inconsistent: § 7.7 uses W,, whereas § 7.8 uses W, for
the bunch height. (I’ll have to fix that for the next printing.)
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Direction of phase space rotation

Since ¢ =

T W, we find that:

1. Below transition with 7, > 0, ¢ increases for W > 0, so a stable particle
will move in a clockwise direction about the stable fixed point (¢, 0).

2. Above transition with 7, < 0, ¢ decreases for W > 0, so a stable particle
will move in a counterclockwise direction about the stable fixed point (¢s, 0).

Below W Above W

Ny>0 Ny<O0
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Note to Waldo: Do some demos with split2.
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Measurement of the beam current

e Wall current monitors can measure the bunched current.
e Weber’s design gives flat response up to 6 GHz.

e DC current transformers (DCCT): measure unbunched cirulating current.
e Better than a part in 10* accuracy.

e R. C. Weber, “Longitudinal Emittance: An Introduction to the Concept and
Survey of Meaesurement Techniques Including Design of a Wall Current
Monitor”, in Accelerator Instrumentation, AIP Conf. Proc. 212, 85 (1989).
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Wall current monitors (WCM)

e Beam (light blue) moving right with image charges (red) on beam pipe walls.
e Ceramic gap (gold) in pipe maintains vacuum integrity.

e Voltage measured across resisters. Ferrite (blue) with outer can enhance
signal.
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DC current transformers (DCCT)

Figure 6. Magnetic modulator section of DC Transformer with flux nulling

feedback.
e Measures unbunched beam.

e Used for dc power supplies.

(Figs 6& 7 from R. C. Weber.)

bl

flux drive (ac +.dc)

Rrsgudl 11U
(®)

#l+#2

(a)

Figure 7. Magnetic modulator signals, (a) with no dc present and (b) with
exaggerated dc presence.
1+ B
m /f
0.5 If
|
|
/| "
| i H
/0.5 1

USPAS: Lectures on Synchrotron Oscillations

Waldo MacKay January, 2013



RHIC injection with no rf

fuf = 28.01653 MHz. ==
h = 360. meaf] |
frf | U
fs = =% = 77.824 kHz. g I
h K o) BN
L = 3833.845 m. st :
¢ = 299792458 m /. .=
B = fs = (0.99523.
v = 10.255. e GESI\:I.ETIC PHASE (deg)

e Ah. Must be gold ions.
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RHIC rf cavities

e 28 MHz accelerating (h = 360). e 200 MHz storage (h = 2520).
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RHIC commissioning: Transition Xing

RHIC is first superconducting, slow ramping accelerator to cross

transition energy:

=

Cross unstable transition
energy with radial energy jump:

Transition energy AE= 200 MeV

Current (A), DCCT units

Beam energy

' nxnoa L LABORATORY
I' ']Y]

Slow and fast particles remain in step.
= increased particle interaction (space charge)

= short, unstable bunches
3000
2780
2500
8
2000 4
1780 E Vain oipole sy were
e -
1500
1250
1000 uma s
e h-'h-‘m _;‘.:.:. - =
500
250
. ] 250 500 750 1000 1250 1500
Time in ramp [s]
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AGS transition crossing
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Extraction of beam emittance (longitudinal)
*  Evoluation of phase jump | r{ voltage .
peak intencity, skewness —kurtosis etc.
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Real soliton
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Is 1t a soliton?

RHIC injection.
e Protons.
e after 40 minutes!

High intensity bunch.
Effect of space charge.

« —“zmzomon
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RHIC colliding beams

Beam in blue ring

200 ns (60 m)

Beams in collision at the
interaction regions

200 ns (60 m)

BROOKHAVEN

NATIONAL LABORATORY
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il

Debunching and rebunching in AGS

e 4 x 6 bunches injected from
Booster

e Debunch / rebunch into 4 bunches
at AGS injection

e Final longitudinal emittance:
0.3 eVs/nuc./bunch

e Achieved 4x10 Au ions in 4
bunches at AGS extraction on
8/4/00

NATION-!L LABORATORY

AGS circumference
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Booster and AGS merging

% o
e - (Beosiay |

e x tva ctiem

g = 4 |
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