
Single Gaussian bunch

dQ(s, t) =
q√
2πσs

e
−(s−vt)2

2σs ds,

The distribution of current passing the pickup is then

i(t) =
dQ

dt
= v

dQ

ds
=

qv√
2πσs

e
−(s−vt)2

2σs

=
q√
2πσt

e
−(t−t0)2

2σt ,

where t0 =
s

v
. Fourier transform to get harmonic content: (j =

√
−1.)

ı̂(ω) =
q√
2πσt

∫

∞

−∞

e−jωt e
−

t2

2σ2
t dt =

q√
2πσt

e−
σ2
t
ω2

2

∫

∞

−∞

e
−

(t+jσ2
t
ω)2

2σ2
t dt,

= q e−
σ2
t
ω2

2 .
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Infinitessimal bunch-length approximation:

i(t) = lim
σt→0

q√
2πσt

e−
t2

2σt = q δ(t).

(Remember that the δ-function has the units of the inverse of its argument.)

So the spectral content becomes flat:

ı̂(ω) = q

∫

∞

−∞

e−jωt δ(t) dt = q.
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Circulating bunches

For Np equally spaced bunches:

i(t) =
∞
∑

n=−∞

Np
∑

m=1

∫

∞

−∞

Qm(t′) δ

(

t− t′ − nmL

Npv

)

dt′,

where Qm(t′) = dqm/dt
′ is the longitudinal profile of charge in the mth bunch.

Frequency spectrum:

ı̂(ω) =

Np
∑

m=1

∞
∑

n=−∞

∫

∞

−∞

∫

∞

−∞

e−jωtQm(t′) δ

(

t− t′ − nmL

Npv

)

dt′ dt,

=

Np
∑

m=1

∞
∑

n=−∞

Q̂m(ω) exp

(

−j nmL
Npv

ω

)

.

For identical bunches this becomes

ı̂(ω) = Q̂(ω)
∞
∑

n=−∞

exp

(

−j nL
Npv

ω

)

=
Q(ω)

Npωs

∞
∑

n=−∞

δ (ω − nNpωs) .
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• The left plot shows the current distribution for equal δ-function bunches of
charge Qm(t′) = qδ(t′) and spacing τ = L/Npv.

• The right plot shows the corresponding Fourier transform.
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• If the bunches are Gaussian rather than δ-function shaped, then the comb
has a Gaussian envelope.
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• Leaving a gap of Np − Nb = 120 − 110 bunches produces the comb with
modulation by an enhancement function:

En(ω) =
sin
(

nNbτs
2Np

ω
)

sin
(

nτs
2Np

ω
) .

• The enlargement on the right shows the ripple caused by the gap of 10
missing bunches at a frequency of 78 kHz.
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Long. Schottky spectrum for unbunched beam

• Particles of different momenta will have different revolution frequencies fm.

• Current of mth particle:

im(t) = qfm

∞
∑

n=−∞

ejn[ωmt+ψm] = qfm

[

1 + 2
∞
∑

n=1

cos[n(ωmt+ ψm)]

]

• nth revolution harmonic has bandwidth = nσf = nfs |ηtr|σp

p
.

〈i〉 =
N
∑

i=1

im(t) = Nq〈f〉 = Nqfs,

σ2
i =

〈

(i− 〈i〉)2
〉

=

〈[

N
∑

m=1

qfm

(

1 + 2
∞
∑

n=1

cos(nωmt+ ψm)

)

−Nqfs

]2〉

= 2q2f2sN.
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So the rms current component of the nth harmonic is independent of har-
monic number:

σi = qfs
√
2N.
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• Plot of 1st six revolution harmonics. Area under each peak is identical.
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Synchrotron oscillation of single particle

• Arrival time of particle at detector becomes:

t→ t+ a sin(Ωst+ ψ)

• Current seen by detector on nth turn:

in =

∞
∑

n=−∞

q δ (t− n [τs + a sin(Ωsnτs + ψ)])

≃ q

τs

∞
∑

n=−∞

ejnωs[τs+a sin(nΩsτs+ψ)],

• Identity: ejz sin θ =

∞
∑

m=−∞

Jm(z) ejθ.
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in = q
∞
∑

n=−∞

e−jnωsτs

∞
∑

m=−∞

Jm(nωsa) e
−jm(nωsτs+ψ).
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Transverse oscillation

• Transverse signal of single particle is proportional to dipole oscillation:

dm = am(t)im(t),

• im(t) has components of synchrotron oscillation.

• am(t) = am cos(qmωmt+ ψm) has components of betatron oscillation.
• qm is fractional betatron tune.
• ωm is particle’s revolution frequency.
• ψm is particle’s initial betatron phase.

• Sum over N particles

〈d〉 = 0.

σd =
√

〈(dm − 〈dm〉)2〉 = qfsσa

√

N

2
.
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• Momentum spread and betatron tune spread contribute to give a nonzero
width to the betatron line.

• If the betatron tune spread is only due to chromaticity, then

σq = |(n+ q)ηtr +Qξ| σp
p
, (1)

where Q is the total betatron tune (including integer part) and ξ is the
chromaticity

ξ =
p

Q

dQ

dp
.

• Other contributions to the betatron tune spread which are not chromatic
should be added in quadrature with Eq. (1), since they would be indepen-
dent of the momentum oscillation.
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• Spectrum of betatron lines. The dashed lines are folded over from negative
frequencies by plotting the absolute value |(n+q)fs|. Here we have plotted
lines for q < 0.5.


 13�

USPAS: Lectures on Schottky Spectra
Waldo MacKay January, 2013



For large values of n, the fractional part of the tune becomes negligible and the
width of the band is

σq ≃ |nηtr +Qξ| σp
p
.

We now see that the widths of the upper and lower sidebands are different since
n can be either positive or negative. Whether the upper is narrower or wider
depends on the signs of ηtr, n, and ξ.

• Measurement showing betatron and synchrotron sidebands around a revo-
lution line.
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