Single (Gaussian bunch
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The distribution of current passing the pickup is then
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Infinitessimal bunch-length approximation:

i(t) = lim —L— e~ % = qo(t).

ot—0 4/ 27'('O't

(Remember that the d-function has the units of the inverse of its argument.)

So the spectral content becomes flat:

(w) = q/ e Yt 5(t) dt = q.
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Circulating bunches

For N, equally spaced bunches:

i(t) = fj gpj/o; Qm(t’)5<t—t’— TL) dt’,

(Y

where Q,,(t') = dg,,/dt' is the longitudinal profile of charge in the m*™® bunch.
Frequency spectrum:

N
D o0 o0 o0 ‘ )’
w=> Y / / eIt Qo (') (t—t’ - 7}\7;7’ ) dt’ dt,
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For identical bunches this becomes

oo

i(w) = Q(w) Z exp (—j;\j—}i}w) = ]%]EZZ Z 0 (w — nNpws) .

nN=—oo

AN, USPAS: Lectures on Schottky Spectra
Iq”a Waldo MacKay January, 2013
J

n=——oo



i(t) o)

e The left plot shows the current distribution for equal d-function bunches of
charge Q,,(t") = ¢d(t') and spacing 7 = L/N,v.

e The right plot shows the corresponding Fourier transform.
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e If the bunches are Gaussian rather than J-function shaped, then the comb
has a Gaussian envelope.
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e Leaving a gap of N, — Ny = 120 — 110 bunches produces the comb with
modulation by an enhancement function:

anTS
2N, W)

sin (
Enlte) = sin (;&2 w)

e The enlargement on the right shows the ripple caused by the gap of 10
missing bunches at a frequency of 78 kHz.
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Long. Schottky spectrum for unbunched beam

e Particles of different momenta will have different revolution frequencies f,,.

e Current of m'™ particle:

im(t) = qfm Y "t Tml—gf 11423 " cosfn(wmt + wm)]]
n=——o0 n=1
e n'" revolution harmonic has bandwidth = noy = nf; ‘ntr‘%.
N
(i) = Y im(t) = Nq(f) = Naf.,
1=1
N 00 2
o = {(i— (i))*) = < [Z qfm <1 + 2 Zcos(mumt -+ me)) — quS] >
m=1 n=1
= 2¢°fIN
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So the rms current component of the n*® harmonic is independent of har-

monic number:
05 = Qfs V2N.
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e Plot of 1st six revolution harmonics. Area under each peak is identical.
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Synchrotron oscillation of single particle

e Arrival time of particle at detector becomes:

t —t+ asin(Qst + )

e Current seen by detector on n*" turn:

- Z q5 (t —n [7‘8 + CLSiH(anTS + w)])

n=—oo

00
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oo
e Identity: elZ st — Z I (2) e’

m=—00
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Transverse oscillation

e Transverse signal of single particle is proportional to dipole oscillation:
Ay = Ay () (1),

e i,,(t) has components of synchrotron oscillation.

® 0, (t) = ay, cos(qmwmt + ¥umm) has components of betatron oscillation.
e (,, is fractional betatron tune.
® w,, is particle’s revolution frequency.
e 1, is particle’s initial betatron phase.

e Sum over N particles
(d)y = 0.
| N
Od = \/<(dm - <dm>)2> — Qfsaa 3
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e Momentum spread and betatron tune spread contribute to give a nonzero
width to the betatron line.

e If the betatron tune spread is only due to chromaticity, then

o
Uq:\(nJFQ)??trJer\?pa (1)
where @) is the total betatron tune (including integer part) and & is the
chromaticity
e=2 dQ
Q dp

e Other contributions to the betatron tune spread which are not chromatic
should be added in quadrature with Eq. (1), since they would be indepen-
dent of the momentum oscillation.
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e Spectrum of betatron lines. The dashed lines are folded over from negative
frequencies by plotting the absolute value |(n + q) fs|. Here we have plotted
lines for q < 0.5.
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For large values of n, the fractional part of the tune becomes negligible and the
width of the band is

o
oq =~ [Ny + QE| Fp.

We now see that the widths of the upper and lower sidebands are different since
n can be either positive or negative. Whether the upper is narrower or wider
depends on the signs of 7., n, and &.

§ &8 8 # 3 8 8 &8 ¥ 8 % 3
-~

e Measurement showing betatron and synchrotron sidebands around a revo-

lution line.
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