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10.4: Krylov-Bogoliubov(-Mitropolsky) Averaging 

§  Waldo had started with a simplified model of one-
dimensional transverse dynamics earlier 

    and evaluated it in terms of harmonics of the driving term 
§  He started to look at nonlinear forcing terms too 
§  An approach for phase-averaging nonlinear resonators close 

to resonance was developed by Krylov and Bogoliubov 

d2x

dθ2
+Q2

H
x = f(θ)

Krylov and Bogoliubuv, “Methodes approchees de la mecanique non-lineaire dans leurs application	


a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y	


rapportant. Kiev: Academie des Sciences d'Ukraine (1935) 

d2x

dθ2
+ (Q2

res + δ)x = �F (x, θ)Following 
C&M 

δ = Q2

H
−Q2

res
≈ 2Qres(QH −Qres)

δ, � are perturbative terms

(θ is like time)
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Ansatz Solution 

§  For            the solution is a SHO: 
§  For            we approximate the solution as quasiperiodic 

       
§         and         vary slowly with respect to      (       does not!) 
§  We want the derivative first derivative of x to be simple 
 
 

d2x

dθ2
+ (Q2

res + δ)x = �F (x, θ)

� = 0 x(θ) = a sin(QHθ + φ)

� � 1

a(θ) θ

x(θ) ≈ a(θ) sinψ(θ) ψ(θ) ≡ QHθ + φ(θ)

φ(θ) ψ(θ)

dx

dθ
=

da

dθ
sinψ +

dψ

dθ
a cosψ =

da

dθ
sinψ +Qresa cosψ +

dφ

dθ
a cosψ

Unperturbed 
“fast” resonator 

Small “slow” perturbations 
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Slow vs Fast 

§  Constrain the slow terms to cancel in the first derivative of x 

§  This gives one first-order differential equation for 
§  We get another from the full second-order equation of motion  

derived from this reduced first-order derivative 

dx

dθ
=

da

dθ
sinψ +

dψ

dθ
a cosψ =

da

dθ
sinψ +Qresa cosψ +

dφ

dθ
a cosψ

Unperturbed 
“fast” resonator 

Small “slow” perturbations 

dx

dθ
= Qresa cosψ

da

dθ
sinψ +

dφ

dθ
a cosψ = 0

a,φ
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Back to Equation of Motion 

§  This is breaking down our second order differential 
equation into two first order differential equations 
§  We can solve the two blue boxed equations for           ,  

dx

dθ
= Qresa cosψ

d2x

dθ2
= −Q2

resa sinψ +Qres
da

dθ
cosψ −Qres

dφ

dθ
a sinψ

⇒ da

dθ
cosψ − dφ

dθ
a sinψ = − aδ

Qres
sinψ +

�

Qres
F

�
a sinψ,

ψ − φ

Qres

�

da/dθ dφ/dθ

da

dθ
= − δa

Qres
sinψ cosψ +

�

Qres
F (ψ) cosψ ≡ f(ψ)

dφ

dθ
=

δ

Qres
sin2 ψ − �

Qresa
F (ψ) sinψ ≡ g(ψ)
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And Now For The Trick 

§  We assumed        and         are slowly varying with    or 
§  We then approximate these as nearly periodic in 

§  Approximate the derivatives as their averages over one cycle in  

da

dθ
= − δa

Qres
sinψ cosψ +

�

Qres
F (ψ) cosψ ≡ f(ψ)

dφ

dθ
=

δ

Qres
sin2 ψ − �

Qresa
F (ψ) sinψ ≡ g(ψ)

a(θ) θφ(θ) ψ

ψ

f(ψ) ≈
∞�

n=−∞
fn einψ g(ψ) ≈

∞�

n=−∞
gn einψ

fn ≡ 1

2π

� ∞

0
f(ψ) e−inψ dψ gn ≡ 1

2π

� ∞

0
g(ψ) e−inψ dψ

Fourier 
coefficients 

ψ

da

dθ
≈

�
da

dθ

�
= f0 =

1

2π

� 2π

0

�
da

dθ

�
dψ

dφ

dθ
≈

�
dφ

dθ

�
= g0 =

1

2π

� 2π

0

�
dφ

dθ

�
dψ
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The Trick’s Reveal 
da

dθ
= − δa

Qres
sinψ cosψ +

�

Qres
F (ψ) cosψ ≡ f(ψ)

dφ

dθ
=

δ

Qres
sin2 ψ − �

Qresa
F (ψ) sinψ ≡ g(ψ)

da

dθ
≈

�
da

dθ

�
= f0 =

1

2π

� 2π

0

�
da

dθ

�
dψ

dφ

dθ
≈

�
dφ

dθ

�
= g0 =

1

2π

� 2π

0

�
dφ

dθ

�
dψ

h1 ≡ da

dθ
=

�

2πQres

� 2π

0
F (ψ) cosψ dψ

h2 ≡ dφ

dθ
=

δ

2Qres
− �

2πQresa

� 2π

0
F (ψ) sinψ dψ

F

�
a sinψ,

ψ − φ

Qres

�
so this is still nontrivial!
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10.5: Half-Integer Resonance 

§  Consider the half-integer resonance, 
§  We had assumed 

§  So 

§  Our KB(M) integrals give first order differential equations 

F (x, θ) = x cos(2θ) = a sinψ cos[2(ψ − φ)]

QH = m/2 (m odd)

x(θ) ≈ a(θ) sinψ(θ) ψ(θ) ≡ QHθ + φ(θ)

da

dθ
=

�a

4
sin(2φ)

dφ

dθ
=

δ

2
+

�

4
cos(2φ)
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Awww, Our First Invariant – Isn’t It Cute? 
dφ

dθ
=

δ

2
+

�

4
cos(2φ)

1

dθ
=

�a

4
sin(2φ)

1

da

− d

da
[cos(2φ)] =

4δ

�a
+

2

a
cos(2φ) ⇒ cos(2φ) =

A

a2
− 2δ

�

§  Here A is a constant of integration that must be based on 
initial conditions 
§  But we can also express it completely in terms of our dynamical 

variables and correspondingly, their initial conditions 

§  A is an example of a dynamical invariant 
§  These are the holy grails of dynamical analysis 
§  Also known as an integral of the motion 

A = a2 cos(2φ) +
2δ

�
= a20 cos(2φ0) +

2δ

�
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It Blow’d Up Real Good 

§  We’ll skip down a bit in the text’s derivation to get to 
another important result: finding the solution for oscillation 
amplitude a 

§  The amplitude grows exponentially if            or 
§  Conversely, the amplitude oscillates stably if  
§  This is known as a resonance stop-band 

§  In an accelerator with this type of resonance, tunes cannot 
get closer than the resonance width from, e.g., Q=1/2 

α > 0
|δ| <

����
�

2

����

|δ| >
����
�

2

����
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But You Promised Us Pictures 
§  It’s not too hard to write a primitive tracking program to 

evaluate motion under this resonance 
da

dθ
=

�a

4
sin(2φ)

dφ

dθ
=

δ

2
+

�

4
cos(2φ)

� = 0, δ = 0.03 � = 0.01, δ = 0.03

� = 0.03,

δ = 0.03

� = 0.055,

δ = 0.03

� = 0.065,

δ = 0.03
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§  Consider the third-integer resonance, 
§  We had assumed 

§  So 

§  Our KB(M) integrals give first order differential equations 

10.6: Third Integer Resonance 

QH = m/3

x(θ) ≈ a(θ) sinψ(θ) ψ(θ) ≡ QHθ + φ(θ)

F (x, θ) = x cos(3θ) = a sinψ cos[3(ψ − θ)]

da

dθ
= − 3

8m
�a2 cos(3φ)

dφ

dθ
=

3δ

2m
+

3

8m
�a sin(3φ)
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Stroboscopic Representation 

§  How do we plot these coordinates? 
§  We can still plot “position” 

§  And we can plot that position vs the normalized “angle” 

§  Unperturbed motion in these coordinates is just simple 
harmonic oscillators, or circles. 
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Nontrivial Fixed Points 

§  These differential equations are a description of a 
dynamical system that has fixed points where both 
derivatives are equal to zero 
§  One natural fixed point is a=0 (no surprise) 
§  But we also find 

§  This produces three fixed points that are locally stable 
(elliptical), and three fixed points that are locally unstable 
(hyperbolic) 

da

dθ
= − 3

8m
�a2 cos(3φ)

dφ

dθ
=

3δ

2m
+

3

8m
�a sin(3φ)

da

dθ
= 0 ⇒ cos(3φFP) = 0 ⇒ sin(3φFP) = ±1

dφ

dθ
= 0 ⇒ δ ± �aFP

4
= 0 ⇒ aFP = ∓4δ

�
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Linearizing Around The Fixed Points 

§  Linearizing motion around the fixed points gives simple 
harmonic oscillator equations 

φ = φFP +∆φ ⇒ d(∆φ)

dθ
≈ ± 3�

8m
∆a

a = aFP +∆a ⇒ d(∆a)

dθ
≈ ±9�a2FP

8m
∆φ

d2(∆a)

dθ
− k2∆a = 0

d2(∆ψ)

dθ
− k2∆ψ = 0

Simple 
Harmonic 
Oscillators 

k2 =
27�2a2FP
64m2

k =
3
√
3 �aFP
8m

aFP = ∓4δ

�
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Third Integer Phase Space 

Hyperbolic Fixed Points 

Elliptical Fixed Point 

Separatrix 
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Congratulations: Another Invariant! 
§  Doing the invariant trick from the half-integer resonance 

gives us 

§  The lines for the separatrix are given by factoring the 
invariant evaluated at the nontrivial fixed points 

§  This invariant is really like a Hamiltonian (system energy) 

1

dθ
= − 3

8m
�a2 cos(3φ)da

dφ

dθ
=

3δ

2m
+

3

8
�a sin(3φ)

dφ

da
= −aFP + a sin(3φ)

a2 cos(3φ)
sin(3φ) =

A

a3
− 3aFP

2a

A = a3
�
sin(3φ) +

3aFP
2a

�
= a30

�
sin(3φ0) +

3aFP
2a0

�

sin(3φFP) = 1 =
1

2

�aFP
a

�3
− 3aFP

2a
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Invariant Parameter Space 

Separatrix 

si
n
(3
φ
)

a

aFP

Unbounded/unstable initial conditions 

Bounded/stable initial conditions 
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Examples from an Online Lab 
§  Java program lab at http://www.toddsatogata.net/2013-USPAS/labNL.pdf  

Positive delta Negative delta 
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Fun With Nonlinear Dynamics (USPAS 2011) 


