USPAS Accelerator Physics 2013
Duke University

Chapter 10: More Nonlinear Dynamics
“LOtS More Equations” with the occasional pretty picture

Todd Satogata (Jefferson Lab) / satogata@jlab.org

Waldo MacKay (BNL, retired) / waldo@bnl.gov
Timofey Zolkin (FNAL/Chicago) / t.v.zolkin@gmail.com
http://www.toddsatogata.net/2013-USPAS

) JSA
Jfoerson Lab T. Satogata / January 2013 USPAS Accelerator Physics 1 @ @



10.4: Krylov-Bogoliubov(-Mitropolsky) Averaging

= Waldo had started with a simplified model of one-
dimensional transverse dynamics earlier

d’x
de?
and evaluated it in terms of harmonics of the driving term
» He started to look at nonlinear forcing terms too

= An approach for phase-averaging nonlinear resonators close
to resonance was developed by Krylov and Bogoliubov

Following d2£L‘ ) — cF 0
C&M ﬁ + ( res T ).I' € (aj )
0 = %I res 2QreS(QH — QI‘GS)

0, € are perturbative terms

+ QH:C — f(@) (0 is like time)

Krylov and Bogoliubuv, “Methodes approchees de la mecanique non-lineaire dans leurs application
a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y
rapportant. Kiev: Academie des Sciences d'Ukraine (1935) @ @JSA

)
Jfoerson Lab T. Satogata / January 2013 USPAS Accelerator Physics 2



Ansatz Solution
d2
o2
= For € = 0 the solution is a SHO: z(0) = asin(Quf + ¢)
* For € < 1 we approximate the solution as quasiperiodic

z(0) = a(6) sin 1(0) (0) = Qub + ¢(0)

= a(f)and ¢(0) vary slowly with respectto 6 (¢ (f)does not!)
= \We want the derivative first derivative of x to be simple

d d d da d
& —asmw+ —wacosw = —Slnw—i_QresaCOSw—i_ —¢GCOS¢

dd  db db
Unperturbed
N\ /

Small “slow” perturbations

—I_( res—l_é‘)x_eljw(aj 9)
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Slow vs Fast

= (Constrain the slow terms to cancel in the first derivative of x

dr da di) da do

a0 — @smszr @acosw = @Slnw—i—QresaCOSw—" @CLCOSZD

Unperturbed
“fast” resonator /

Small “slow” perturbations

da | do

0 sin ¢ + @acosw =0
dx
@ — Qresacosw

= This gives one first-order differential equation for a, ¢

= We get another from the full second-order equation of motion
derived from this reduced first-order derivative
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Back to Equation of Motion

dx
@ — Qresa COS lb

d?x . da do
W - Qresa S111 ¢ + Qres d COS Tﬂ Qres CL SlIl ¢
= % cos ) — fl—za siny = — C;fes sin ¢ + Qres (a sin 1, w@:e:b)

* This is breaking down our second order differential
equation into two first order differential equations

= We can solve the two blue boxed equations forda/df, d¢/do

da da —

T = _Qres sin 1 cos Y + Qres F(y)cosy = f(v)
do B ) : _

= o Y~ g FW)sing = g(v)
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And Now For The Trick
40 _ _ 2% neostp+ =—F() costp = F(9)

do Qres Qres
dp 6 -
@ B Qres S Zp N Qres F(w) Slnw N g(w)

= We assumed a(6)and ¢(0) are slowly varying with 6 or v
= \We then approximate these as nearly periodic in ¥

o

Z . aint g(w) ~ Z In pint

n——oo nN——=oo

Y e in 1 [~ o—in Fourier
R CI R E T C .

= Approximate the derivatives as their averages over one cycle in
da da 1 da
@’“<d9> Jo= /0 (d@)dw
27
s~ i) y () *
@&
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The Trick’s Reveal

% — _Q(S;Zs sin v cos Y + Qres E(¢) cosyp = f(¢)
dp 9 oy —
@ B Qres S Zp B Qres F(w) Slnw N g(w)

da da 1 da
@%<d6> Jo= W/O <d9)d¢

dp _ /dp\ 1 do
@~<@>—QO—% (w)‘”

_da € o
hl = @ — 27-‘-Qres A F(w) COS¢ d'(p
_dp 9 € o .
"2 =06 T 2 27rQresa/0 F() sing dy

QI'GS
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10.5: Half-Integer Resonance

Consider the half-integer resonance, Qi = m/2 (m odd)
We had assumed

z(0) = a(6) siny(6) ¥(0) = Qub + ¢(0)
F(x,0) = xcos(20) = asiny cos|2(y) — ¢)]

= So

Our KB(M) integrals give first order differential equations

da €a

@ — Z Sln(2¢)

dp 0 €

oY 2 - 9
do 2 + 4 cos(2¢)
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Awww, Our First Invariant — Isn’t It Cute?

L _ @ iop L 40 _0 €
i Zsm(Zgb) - =5 + 1 cos(2¢)
d 46 2 A 26
—%[603(2@] = + - cos(2¢) = cos(2¢) = pe R

= Here A is a constant of integration that must be based on
initial conditions

= But we can also express it completely in terms of our dynamical
variables and correspondingly, their initial conditions

A = a* cos(2¢) + 2—5 = a? cos(2¢0) + 20

= Ais an example of a dynamical invariant
= These are the holy grails of dynamical analysis
= Also known as an integral of the motion
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It Blow’d Up Real Good

= We'll skip down a bit in the text’s derivation to get to
another important result: finding the solution for oscillation

amplitude a
1 £ 4A2 5
2 0
a” =~ [WO exp (\/5—0) —2b+ Wo exp (—\/a 9)]

2
azl—(g), bngo, and c= —Aj

€

WO:Z\/E\/aa61+bag+c + 2aai + b

DO | ™

o] <
= The amplitude grows exponentially if &« > 0 or— !
= Conversely, the amplitude oscillates stably if — 6] >

= This is known as a resonance stop-band

* |n an accelerator with this type of resonance, tunes cannot
get closer than the resonance width from, e.g., Q=1/2

DO | ™
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But You Promised Us Pictures

* [t's not too hard to write a primitive tracking program to
evaluate motion under this resonance

da ea . (26) dp 0 N € (26)
— — — S1n — = — — COS
db 4 dd 2 4
2 | | | | | | | 2 [ | | | | | | 2
1.5 620,520.03 -4 1.5 4 151 a
1} 41 4 1k -
05 - 4 05 4 05} -
0 B B 0 a 0 B |11 B
0.5 |- 4 -05 4 -05 |\ -
1L 4 -1 4 aF .
1.5 | 4 15 4 15 -
-2 l | | | | | | -2 | | | | | | | -2
-2-15-1-050 0.5 1 1.5 2-15-1-050051152  -2-15-1-050 0.5 1 1.5 2
77 e 2 T N — R

i P /ff \\\¢ e = 0.065
(W = ?Z 5\\&\&%‘// 5 — 0.03
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10.6: Third Integer Resonance

Consider the third-integer resonance, Qu = m/3
We had assumed

z(0) = a(6) siny(6) ¥(0) = Qub + ¢(0)
F(z,0) = xcos(30) = asin cos|[3(y) — 0)]

= So

Our KB(M) integrals give first order differential equations

da 3 5
@ = —8—m€a, COS(3¢)
d¢ 35 | 3

0= o + Smea sin(3¢)
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Stroboscopic Representation

» How do we plot these coordinates?
= We can still plot “position”

xwy:qmmn[

m

20+ 6(0)]

* And we can plot that position vs the normalized “angle”

_3d

"0 = =

a(6) cos [%0 + qb(H)]

= Unperturbed motion in these coordinates is just simple
harmonic oscillators, or circles.
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Nontrivial Fixed Points

d d J
d_g —8%ea2 cos(3¢) d—? = 23_m + 8%6& sin(3¢)

» These differential equations are a description of a
dynamical system that has fixed points where both
derivatives are equal to zero

* One natural fixed point is a=0 (no surprise)
= But we also find

d

d—g =0 = cos(3¢pp) =0 = sin(3¢pp) = +1
dp €app 40

@ =0 — O + 1 =0 — arp = F p

= This produces three fixed points that are locally stable
(elliptical), and three fixed points that are locally unstable
(hyperbolic)
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Linearizing Around The Fixed Points

» Linearizing motion around the fixed points gives simple
harmonic oscillator equations

2
a=app +Aa = d(Aa) ~ :I:geaFP A
do 8m
d(Ag) 3€
= ~+—A
6=drp+ 00 = S~ Ag
d2(Aa) dz(Aw) Simple
—k’Aa =0 — kA =0 H i
10 10 v e
12 _ 27e%a%p L 3v/3 earp
 64m2 B 8m
46
arp = +—
€

Qe
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Third Integer Phase Space

Hyperbolic Fixed Points

Elliptical Fixed Point
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Congratulations: Another Invariant!

» Doing the invariant trick from the half-integer resonance

gives us
L3 db_ 3 3
= g€ cos(3¢)da 0= o T S €0 sin(3¢)
d¢ arpp + asin(3¢) , A 3app
oY 36) = = _
da a? cos(3¢) sin(39) a’ 2a
A =a® (sin(3¢) + S0FP ) agy | sin(3¢g) + Sarr
2a 0 2ag

= The lines for the separatrix are given by factoring the
invariant evaluated at the nontrivial fixed points

. 1 rapp\3 3app
Sln<3q51:‘p) 2 0 2a

= This invariant is really like a Hamiltonian (system energy)
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Invariant Parameter Space

1 .................................................................................................................
Separatrix
Unbounded/unstable initial conditions a

VR -
-
0
=
n

-1 b

Bounded/stable initial conditions
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Examples from an Online Lab

= Java program lab at http://www.toddsatogata.net/2013-USPAS/labNL.pdf

Negative delta

Number of iterations : 1000 [ 1000 more |

Use the slide to pick a value for Q : - 0.331
Use the slide to pick a value for b2: = 0.082

Done

Clear
Ne—

g% g%%%yﬁ%wf?n"a“‘{‘gg&a
o

o
- ®0gg
Soogo%a

Number of iterations : 1000 ( 1000 more |

.geffegon Lab

T. Satogata / January 2013

Use the slide to pick a value for Q : - 0.335

Use the slide to pick a value for b2: - 0.082

" Clear Done
9.
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Fun With Nonlinear Dynamics (USPAS 2011)
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