USPAS Accelerator Physics 2013 Duke University

Chapter 10: More Nonlinear Dynamics "Lots More Equations" with the occasional pretty picture

Todd Satogata (Jefferson Lab) / <u>satogata@jlab.org</u> Waldo MacKay (BNL, retired) / <u>waldo@bnl.gov</u> Timofey Zolkin (FNAL/Chicago) / t.v.zolkin@gmail.com <u>http://www.toddsatogata.net/2013-USPAS</u>

Jefferson Lab

10.4: Krylov-Bogoliubov(-Mitropolsky) Averaging

 Waldo had started with a simplified model of onedimensional transverse dynamics earlier

$$\frac{d^2x}{d\theta^2} + Q_{\rm H}^2 x = f(\theta) \qquad \qquad (\theta \text{ is like time})$$

and evaluated it in terms of harmonics of the driving term

- He started to look at nonlinear forcing terms too
- An approach for phase-averaging nonlinear resonators close to resonance was developed by Krylov and Bogoliubov

Following C&M

efferson Lab

$$\frac{d^2x}{d\theta^2} + (Q_{\rm res}^2 + \delta)x = \epsilon F(x,\theta)$$

$$\delta = Q_{\rm H}^2 - Q_{\rm res}^2 \approx 2Q_{\rm res}(Q_{\rm H} - Q_{\rm res})$$

$$\delta, \epsilon \text{ are perturbative terms}$$

Krylov and Bogoliubuv, "Methodes approchees de la mecanique non-lineaire dans leurs application a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s'y rapportant. Kiev: Academie des Sciences d'Ukraine (1935)

Ansatz Solution

$$\frac{d^2x}{d\theta^2} + (Q_{\rm res}^2 + \delta)x = \epsilon F(x,\theta)$$

- For $\epsilon = 0$ the solution is a SHO: $x(\theta) = a \sin(Q_{\rm H}\theta + \phi)$
- For $\epsilon \ll 1$ we approximate the solution as quasiperiodic $x(\theta) \approx a(\theta) \sin \psi(\theta) \qquad \psi(\theta) \equiv Q_{\rm H}\theta + \phi(\theta)$
- $a(\theta)$ and $\phi(\theta)$ vary slowly with respect to θ ($\psi(\theta)$ does not!)
- We want the derivative first derivative of x to be simple

$$\frac{dx}{d\theta} = \frac{da}{d\theta} \sin \psi + \frac{d\psi}{d\theta} a \cos \psi = \frac{da}{d\theta} \frac{\sin \psi + Q_{\text{res}} a \cos \psi + \frac{d\phi}{d\theta} a \cos \psi}{\underbrace{\text{Unperturbed}}_{\text{"fast" resonator"}}} \frac{d\phi}{d\theta} \cos \psi$$
Small "slow" perturbations

USPAS Accelerator Physics

3

efferson Lab

Slow vs Fast

Constrain the slow terms to cancel in the first derivative of x

$$\frac{dx}{d\theta} = \frac{da}{d\theta} \sin \psi + \frac{d\psi}{d\theta} a \cos \psi = \frac{da}{d\theta} \sin \psi + Q_{\text{res}} a \cos \psi + \frac{d\phi}{d\theta} a \cos \psi$$
Unperturbed
"fast" resonator

Small "slow" perturbations

$$\frac{da}{d\theta} \sin \psi + \frac{d\phi}{d\theta} a \cos \psi = 0$$

$$\frac{dx}{d\theta} = Q_{\text{res}} a \cos \psi$$

- This gives one first-order differential equation for a, ϕ

Jefferson Lab

 We get another from the full second-order equation of motion derived from this reduced first-order derivative

Back to Equation of Motion

$$\frac{dx}{d\theta} = Q_{\rm res}a\cos\psi$$
$$\frac{d^2x}{d\theta^2} = -Q_{\rm res}^2a\sin\psi + Q_{\rm res}\frac{da}{d\theta}\cos\psi - Q_{\rm res}\frac{d\phi}{d\theta}a\sin\psi$$
$$\Rightarrow \qquad \frac{da}{d\theta}\cos\psi - \frac{d\phi}{d\theta}a\sin\psi = -\frac{a\delta}{Q_{\rm res}}\sin\psi + \frac{\epsilon}{Q_{\rm res}}F\left(a\sin\psi,\frac{\psi-\phi}{Q_{\rm res}}\right)$$

 This is breaking down our second order differential equation into two first order differential equations

Jefferson Lab

- We can solve the two blue boxed equations for da/d heta , $d\phi/d heta$

$$\frac{da}{d\theta} = -\frac{\delta a}{Q_{\rm res}} \sin \psi \cos \psi + \frac{\epsilon}{Q_{\rm res}} F(\psi) \cos \psi \equiv f(\psi)$$
$$\frac{d\phi}{d\theta} = \frac{\delta}{Q_{\rm res}} \sin^2 \psi - \frac{\epsilon}{Q_{\rm res}a} F(\psi) \sin \psi \equiv g(\psi)$$

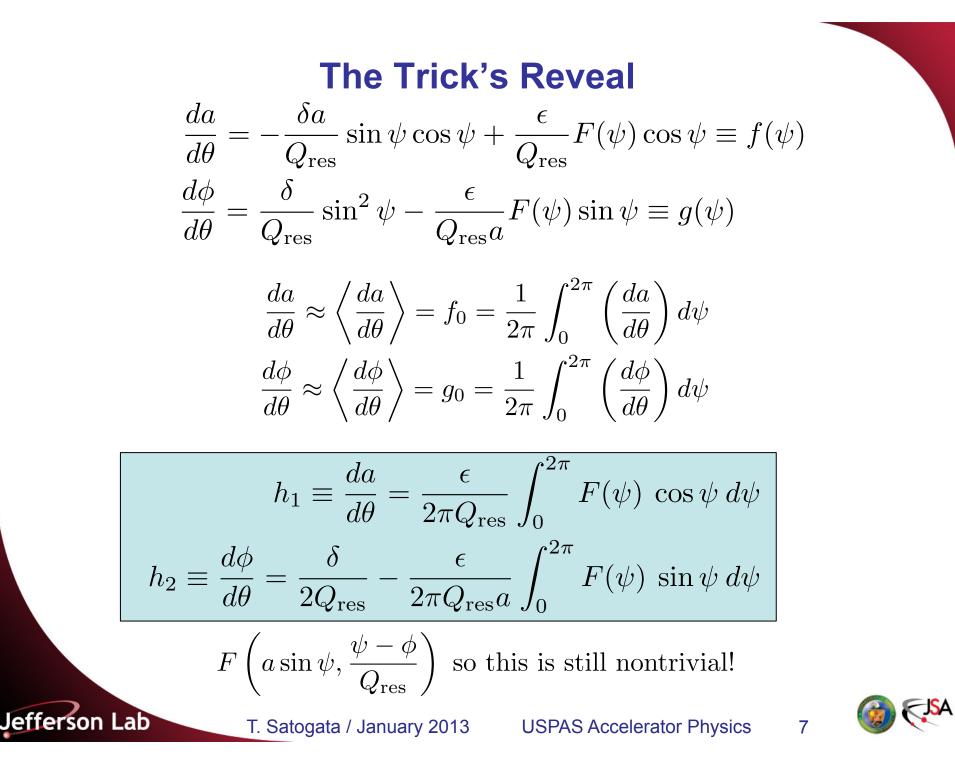
And Now For The Trick $\frac{da}{d\theta} = -\frac{\delta a}{Q_{\text{res}}} \sin \psi \cos \psi + \frac{\epsilon}{Q_{\text{res}}} F(\psi) \cos \psi \equiv f(\psi)$ $\frac{d\phi}{d\theta} = \frac{\delta}{Q_{\text{res}}} \sin^2 \psi - \frac{\epsilon}{Q_{\text{res}}a} F(\psi) \sin \psi \equiv g(\psi)$

- We assumed $a(\theta)$ and $\phi(\theta)$ are slowly varying with θ or ψ
- We then approximate these as nearly periodic in ψ

$$f(\psi) \approx \sum_{n=-\infty}^{\infty} f_n e^{in\psi} \qquad g(\psi) \approx \sum_{n=-\infty}^{\infty} g_n e^{in\psi}$$
$$f_n \equiv \frac{1}{2\pi} \int_0^\infty f(\psi) e^{-in\psi} d\psi \qquad g_n \equiv \frac{1}{2\pi} \int_0^\infty g(\psi) e^{-in\psi} d\psi \quad \text{Fourier coefficients}$$

- Approximate the derivatives as their averages over one cycle in ψ

$$\frac{da}{d\theta} \approx \left\langle \frac{da}{d\theta} \right\rangle = f_0 = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{da}{d\theta} \right) d\psi$$
$$\frac{d\phi}{d\theta} \approx \left\langle \frac{d\phi}{d\theta} \right\rangle = g_0 = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{d\phi}{d\theta} \right) d\psi$$
$$T. \text{ Satogata / January 2013} \qquad \text{USPAS Accelerator Physics} \qquad 6$$



10.5: Half-Integer Resonance

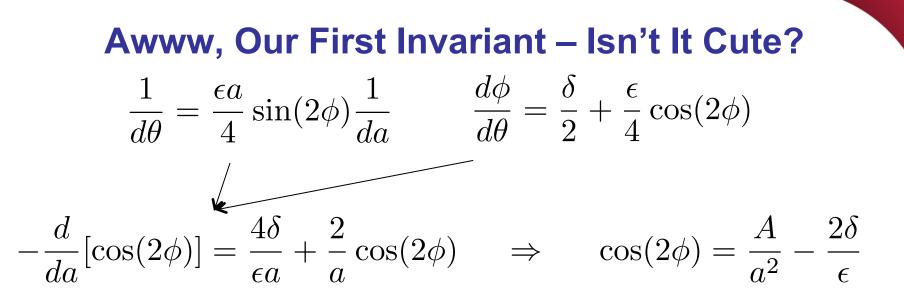
- Consider the half-integer resonance, $Q_{\rm H} = m/2 \ (m \text{ odd})$
- We had assumed

efferson Lab

 $x(\theta) \approx a(\theta) \sin \psi(\theta) \qquad \quad \psi(\theta) \equiv Q_{\rm H}\theta + \phi(\theta)$

- So $F(x,\theta) = x\cos(2\theta) = a\sin\psi\cos[2(\psi-\phi)]$
- Our KB(M) integrals give first order differential equations

$$\frac{da}{d\theta} = \frac{\epsilon a}{4} \sin(2\phi)$$
$$\frac{d\phi}{d\theta} = \frac{\delta}{2} + \frac{\epsilon}{4} \cos(2\phi)$$



- Here A is a constant of integration that must be based on initial conditions
 - But we can also express it completely in terms of our dynamical variables and correspondingly, their initial conditions

$$A = a^2 \cos(2\phi) + \frac{2\delta}{\epsilon} = a_0^2 \cos(2\phi_0) + \frac{2\delta}{\epsilon}$$

- A is an example of a **dynamical invariant**
 - These are the **holy grails** of dynamical analysis
 - Also known as an integral of the motion

lefferson Lab

It Blow'd Up Real Good

 We'll skip down a bit in the text's derivation to get to another important result: finding the solution for oscillation amplitude a

$$a^{2} = \frac{1}{4\alpha} \left[W_{0} \exp\left(\sqrt{\alpha} \frac{\varepsilon}{m} \theta\right) - 2b + \frac{4A_{0}^{2}}{W_{0}} \exp\left(-\sqrt{\alpha} \frac{\varepsilon}{m} \theta\right) \right]$$
$$\alpha = 1 - \left(\frac{2\delta}{\epsilon}\right)^{2}, \quad b = \frac{4\delta}{\varepsilon}A_{0}, \quad \text{and} \quad c = -A_{0}^{2}$$
$$W_{0} = 2\sqrt{\alpha}\sqrt{\alpha}a_{0}^{4} + ba_{0}^{2} + c + 2\alpha a_{0}^{2} + b$$
$$\Rightarrow |\delta| < \left|\frac{\epsilon}{\omega}\right|$$

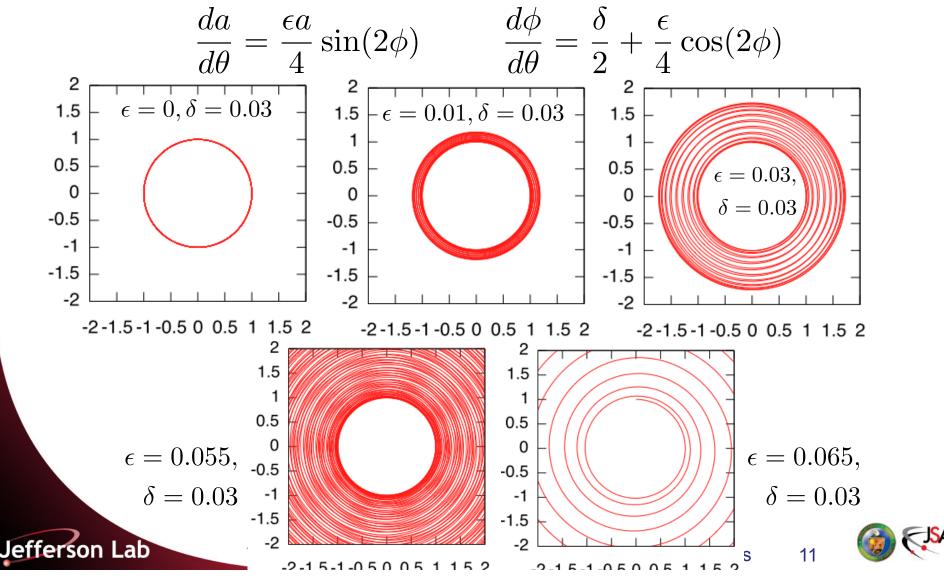
- The amplitude grows exponentially if $\alpha > 0$ or \checkmark
- Conversely, the amplitude oscillates stably if $|\delta| > \left|\frac{\delta}{\delta}\right|$
- This is known as a **resonance stop-band**

efferson Lab

 In an accelerator with this type of resonance, tunes cannot get closer than the resonance width from, e.g., Q=1/2

But You Promised Us Pictures

 It's not too hard to write a primitive tracking program to evaluate motion under this resonance



10.6: Third Integer Resonance

- Consider the third-integer resonance, $Q_{\rm H}=m/3$
- We had assumed

lefferson Lab

• So $x(\theta) \approx a(\theta) \sin \psi(\theta) \qquad \psi(\theta) \equiv Q_{\rm H}\theta + \phi(\theta)$ $F(x, \theta) = x \cos(3\theta) = a \sin \psi \cos[3(\psi - \theta)]$

Our KB(M) integrals give first order differential equations

$$\frac{da}{d\theta} = -\frac{3}{8m}\epsilon a^2 \cos(3\phi)$$
$$\frac{d\phi}{d\theta} = \frac{3\delta}{2m} + \frac{3}{8m}\epsilon a \sin(3\phi)$$

Stroboscopic Representation

- How do we plot these coordinates?
- We can still plot "position"

efferson Lab

$$x(\theta) = a(\theta) \sin\left[\frac{m}{3}\theta + \phi(\theta)\right]$$

And we can plot that position vs the normalized "angle"

$$\hat{x}(\theta) = \frac{3}{m} \frac{dx}{d\theta} = a(\theta) \cos\left[\frac{m}{3}\theta + \phi(\theta)\right]$$

 Unperturbed motion in these coordinates is just simple harmonic oscillators, or circles.

Nontrivial Fixed Points

 $\frac{da}{d\theta} = -\frac{3}{8m}\epsilon a^2\cos(3\phi) \qquad \frac{d\phi}{d\theta} = \frac{3\delta}{2m} + \frac{3}{8m}\epsilon a\sin(3\phi)$

- These differential equations are a description of a dynamical system that has fixed points where both derivatives are equal to zero
 - One natural fixed point is a=0 (no surprise)
 - But we also find

.1 .

efferson Lab

$$\frac{da}{d\theta} = 0 \quad \Rightarrow \quad \cos(3\phi_{\rm FP}) = 0 \quad \Rightarrow \quad \sin(3\phi_{\rm FP}) = \pm 1$$
$$\frac{d\phi}{d\theta} = 0 \quad \Rightarrow \quad \delta \pm \frac{\epsilon a_{\rm FP}}{4} = 0 \quad \Rightarrow \quad a_{\rm FP} = \mp \frac{4\delta}{\epsilon}$$

 This produces three fixed points that are locally stable (elliptical), and three fixed points that are locally unstable (hyperbolic)

Linearizing Around The Fixed Points

 Linearizing motion around the fixed points gives simple harmonic oscillator equations

$$a = a_{\rm FP} + \Delta a \quad \Rightarrow \quad \frac{d(\Delta a)}{d\theta} \approx \pm \frac{9\epsilon a_{\rm FP}^2}{8m} \Delta \phi$$

$$\phi = \phi_{\rm FP} + \Delta \phi \quad \Rightarrow \quad \frac{d(\Delta \phi)}{d\theta} \approx \pm \frac{3\epsilon}{8m} \Delta a$$

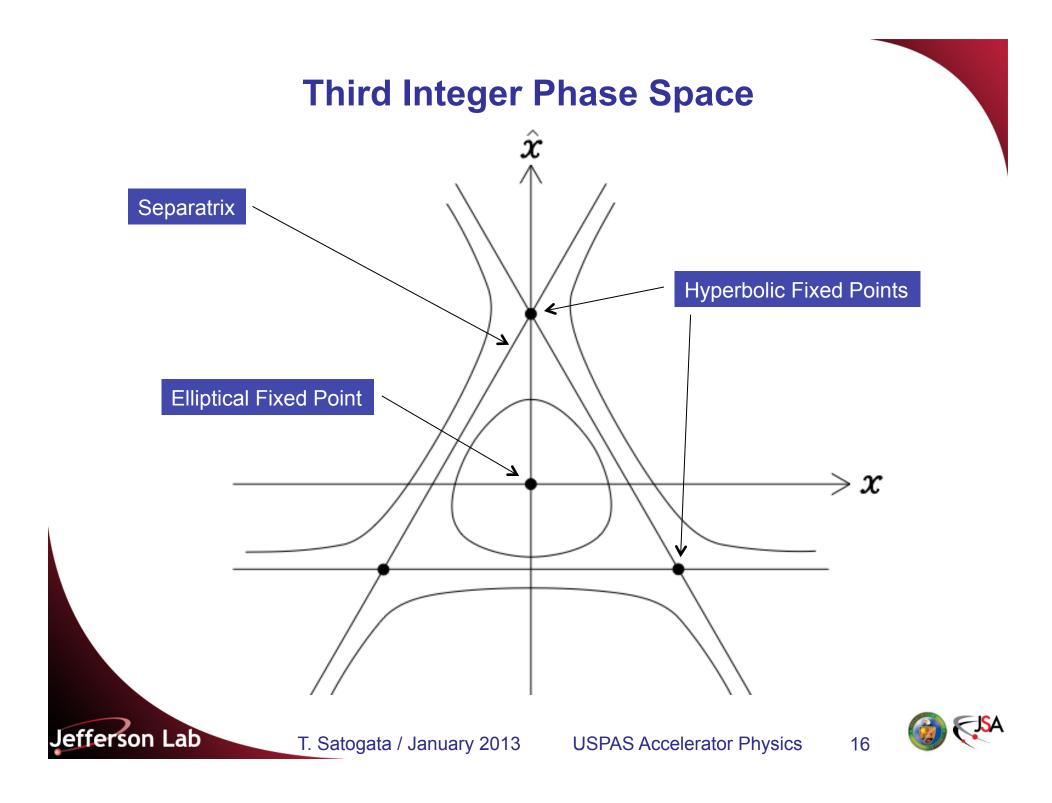
$$\frac{d^2(\Delta a)}{d\theta} - k^2 \Delta a = 0 \qquad \frac{d^2(\Delta \psi)}{d\theta} - k^2 \Delta \psi = 0$$

$$k^2 = \frac{27\epsilon^2 a_{\rm FP}^2}{64m^2} \qquad k = \frac{3\sqrt{3}\epsilon a_{\rm FP}}{8m}$$

$$a_{\rm FP} = \mp \frac{4\delta}{\epsilon}$$

T. Satogata / January 2013

Jefferson Lab



Congratulations: Another Invariant!

Doing the invariant trick from the half-integer resonance gives us

$$\frac{1}{d\theta} = -\frac{3}{8m}\epsilon a^2 \cos(3\phi)da \qquad \frac{d\phi}{d\theta} = \frac{3\delta}{2m} + \frac{3}{8}\epsilon a \sin(3\phi)$$
$$\frac{d\phi}{da} = -\frac{a_{\rm FP} + a\sin(3\phi)}{a^2\cos(3\phi)} \qquad \sin(3\phi) = \frac{A}{a^3} - \frac{3a_{\rm FP}}{2a}$$

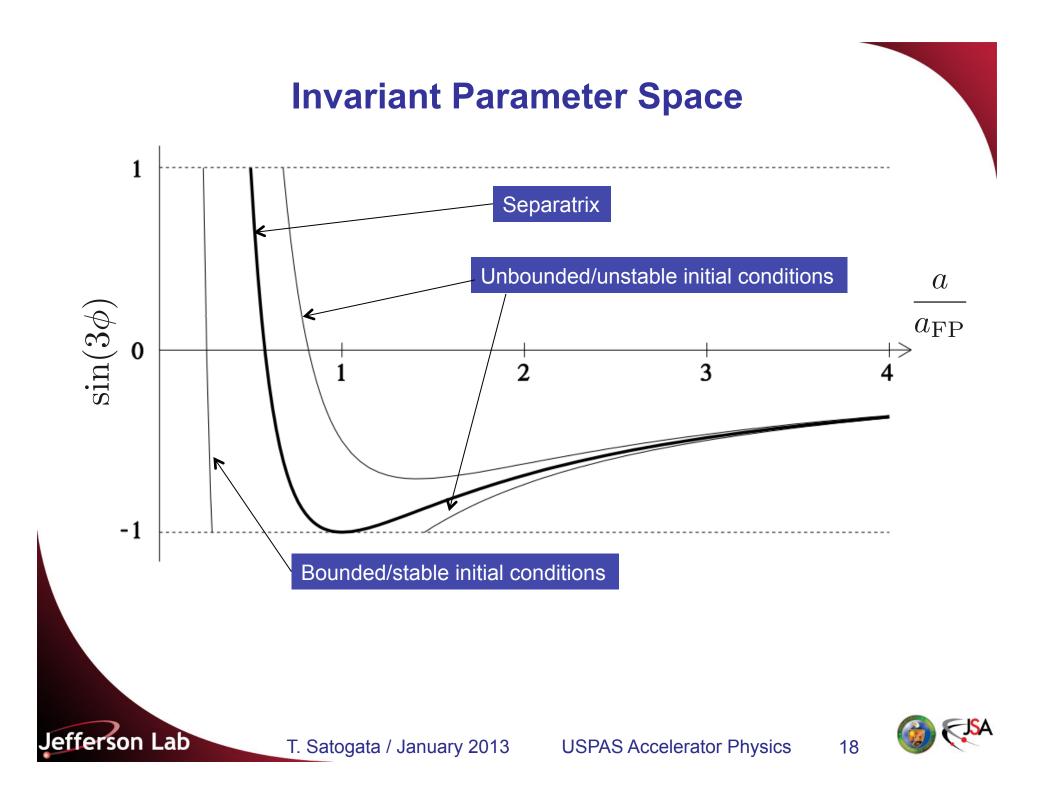
$$A = a^{3} \left(\sin(3\phi) + \frac{3a_{\rm FP}}{2a} \right) = a_{0}^{3} \left(\sin(3\phi_{0}) + \frac{3a_{\rm FP}}{2a_{0}} \right)$$

• The lines for the separatrix are given by factoring the invariant evaluated at the nontrivial fixed points

$$\sin(3\phi_{\rm FP}) = 1 = \frac{1}{2} \left(\frac{a_{\rm FP}}{a}\right)^3 - \frac{3a_{\rm FP}}{2a}$$

Jefferson Lab

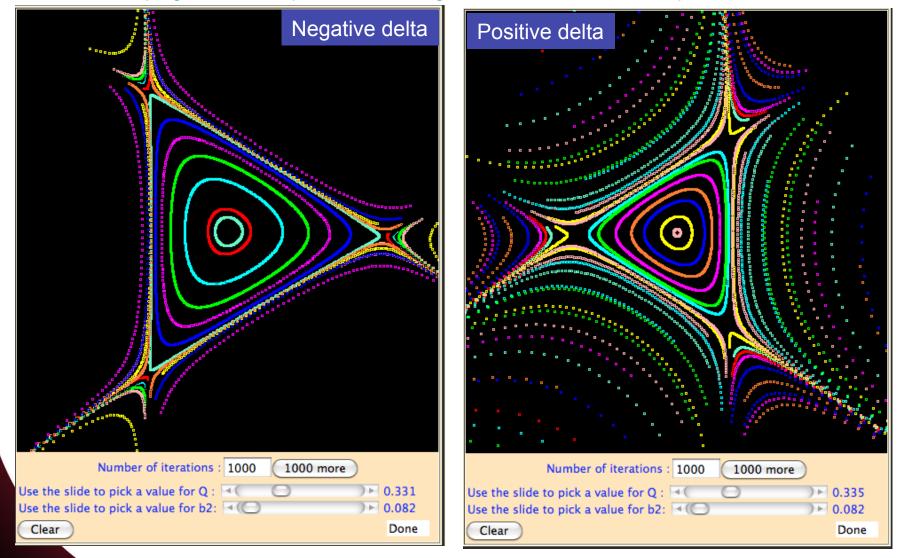
This invariant is really like a Hamiltonian (system energy)



Examples from an Online Lab

Java program lab at http://www.toddsatogata.net/2013-USPAS/labNL.pdf

Jefferson Lab



Fun With Nonlinear Dynamics (USPAS 2011)

