
Integer resonances

Let’s start with a simplified formalism for the horizontal motion equation:

d2x

dθ2
+QH

2x = f(θ),

where

• θ = s/R is the azimuthal angle around the ring with

• R being the average radius of the ring,

i. e. we approximate by a circular ring.

• f(θ) is some source of perturbations from errors.

Fourier transform the function f and let’s look at the mth harmonic term:

d2x

dθ2
+QH

2x = ε cos(mθ). (1)
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d2x

dθ2
+QH

2x = ε cos(mθ). (1)

Solution to Eq. (1) is of the form

x = x̃+ x̄,

with homogeneous part

x̃ = A cos(QHθ) +B sin(QHθ),

an inhomogeneous part

x̄ =
ε

QH
2 −m2

[cos(mθ)− cos(QHθ)]

x̄ =
εθ

QH +m
sin

(

QH +m

2
θ

)

2

(QH −m)θ
sin

(

QH −m

2
θ

)

.

which reduces to x̄ ≃
εθ

2QH

sin(QHθ), for QH = m.
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Did that go by too fast?

Trigonometric identity:

sin(A+B) sin(A−B)

= (sinA cosB + sinB cosA)(sinA cosB − sinB cosA)

= sin2 A cos2 B − sin2 B cos2 A

=
1

2
(1 + cos 2A)

1

2
(1− cos 2B)−

1

2
(1− cos 2A)

1

2
(1 + cos 2B)

=
1

2
[cos 2A− cos 2B],

having used the double-angle formulae for cos2 θ and sin2 θ:

cos2 θ =
1

2
(1 + cos 2θ),

sin2 θ =
1

2
(1− cos 2θ).
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Linear growth from integer resonance

θ

x

x̄(θ) =
ε

2QH

θ sin(QHθ).
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Simpler argument

• On an integer resonance, µ is a multiple of 2π, we expect M = I.

If there is a small path-length error δl in one drift section, then the 1-turn matrix
becomes

M =

(

1 δl
0 1

)(

1 0
0 1

)

=

(

1 δl
0 1

)

.

Any particle with x′
0 6= 0 will propagate as

(

xn

x′
n

)

=

(

1 δl
0 1

)n(

x0

x′
0

)

=

(

x0 + nx′
0 δl

x′
0

)

.

This grows linearly with turn number n.
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Linear coupling resonances

Now we consider a slight amount of H-V coupling with equations:

d2x

dθ2
+QH

2x = ε cos(mθ) y, and

d2y

dθ2
+QV

2y = ε cos(mθ)x.

• Assume ε is very small, and substitute the solutions of the homogeneous
equations for x and y into the corresponding inhomog. terms on the rhs:

d2x

dθ2
+QH

2x =
1

2
εy [cos(QV +m)θ + cos(m−QV)θ] , and

d2y

dθ2
+QV

2y =
1

2
εx [cos(QH +m)θ + cos(m−QH)θ] ,

where εx and εy contain the respective amplitude information of the homo-
geneous solutions.
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The same arguments as in the previous section lead to the resonance conditions

QH +QV = m, and

|QH −QV| = m,

which classify linear sum and difference resonances, respectively.

The sum and difference resonances behave differently as a little coupling is
added to an ideal uncoupled lattice.
Consider the uncoupled 1-turn transfer matrix:

T =

(

u1 0

0 u2

)

=







cosµ1 + α1 sinµ1 β1 sinµ1 0 0
−γ1 sinµ1 cosµ1 − α1 sinµ1 0 0

0 0 cosµ2 + α2 sinµ2 β2 sinµ2

0 0 −γ2 sinµ2 cosµ2 − α2 sinµ2







• Diff. res. condition: sinµ1 = sinµ2,

• Sum res. condition: sinµ1 = − sinµ2.
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A common source of transverse coupling is a slight roll of quad by angle θ:

Let’s assume that the last element in T is the thin quadrupole:

Q =

(

F 0

0 D

)

=







1 0 0 0
−1/f 1 0 0
0 0 1 0
0 0 1/f 1






.

Estimate effect of rolled thin quad:

T′ =

(

M n

m N

)

= RQR−1Q−1T

=

(

I cos θ I sin θ
−I sin θ I cos θ

)(

F 0

0 D

)(

I cos θ −I sin θ
I sin θ I cos θ

)(

D 0

0 F

)(

u1 0

0 u2

)

.

Fast forward skipping a bit of algebra:

T′ =

(

(I cos2 θ +D2 sin2 θ)u1 (I− F2)u2 cos θ sin θ
(D2 − I)u1 cos θ sin θ (I cos2 θ + F2 sin2 θ)u2

)

=









(

1 0
2
f
sin2 θ 1

)

u1

(

0 0
2
f
cos θ sin θ 0

)

u2

(

0 0
2
f
cos θ sin θ 0

)

u1

(

1 0
− 2

f
sin2 θ 1

)

u2









.
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More algebra . . .

M = u1 cos
2 θ +

2 sin2 θ

f

(

0 0
cosµ1 + α1 sinµ1 β1 sinµ1

)

,

N = u2 cos
2 θ −

2 sin2 θ

f

(

0 0
cosµ2 + α2 sinµ2 β2 sinµ2

)

,

m =

(

0 0
cosµ1 + α1 sinµ1 β1 sinµ1

)

sin 2θ

f
,

n =

(

0 0
cosµ2 + α2 sinµ2 β2 sinµ2

)

sin 2θ

f
.

Recall from our previous discussion of coupling (in CM:§ 6.9):

κ = λ+ λ−1 =
tr(M+N)

2
±

√

(

tr(M−N)

2

)2

+ |m+ ñ|.

For either resonance condition, cosµ1 = cosµ2, so tr(u1) = tr(u2).
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tr(M−N)

2
=

β1 sinµ1 − β2 sinµ2

f
sin2 θ,

|m+ ñ| =
β1β2

f2
sin2(2θ) sinµ1 sinµ2,

• Notice that |m+ ñ| 6= 0 if there is a slight roll of the quadrupole.

• The sign of |m+ ñ| is determined solely by the product sinµ1 sinµ2.
For the slightly coupled T′, the argument of the radical is

∆± =

(

tr(M−N)

2

)2

+ |m+ ñ|

=
sin4 θ

f2
(β1 sinµ1 − β2 sinµ2)

2 +
β1β2

f2
sin2(2θ) sinµ1 sinµ2

=
sin4 θ

f2
(β1 ± β2)

2 sin2 µ1 ∓
β1β2

f2
sin2(2θ) sin2 µ1

≃ ∓
4β1β2 sin

2 µ1

f2
θ2, for small θ.
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• As θ increases away from zero, the degenerate eigenvalues are pushed apart:

1. In the case of a difference resonance, ∆− > 0, and the degenerate
λj eigenvalue pairs split apart by moving along the unit circle in the
complex plane. Since the eigenvalues stay on the circle, the motion
remains stable with λ∗

j = λ−1
j .

2. For a sum resonance, ∆+ < 0, and the λj eigenvalues move away
from the unit circle out into the complex plane resulting in unstable

motion with λ∗
j 6= λ−1

j .

∆−=0

∆−>0

Difference Resonance

stable

∆+=0

∆+<0

Sum Resonance

unstable


 11�

USPAS: Lectures on Resonances
Waldo MacKay January, 2013



Higher order (nonlinear) resonances

d2x

dθ2
+QH

2x = ε
∂Bx

∂y
x cos(mθ), and

d2y

dθ2
+QV

2y = ε
∂Bx

∂y
y cos(mθ)

∂Bx

∂y
= Re

(

i
∞
∑

n=0

n(an − ibn)(x+ iy)n−1

)

=

[n−1

2 ]
∑

j=0

nbn(−1)j
(

n− 1

2j

)

xn−1−2jy2j .

Start with solutions,

x = A1 cos(QHθ), and y = A2 cos(QVθ),

d2x

dθ2
+QH

2x = εnbn cos(mθ)

[n−1

2 ]
∑

j=0

(

n− 1

2j

)

An−2j
1 A2j

2 cosn−2j(QHθ) cos
2j(QVθ).
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Lots of algebra

cos(mθ) cosp(QHθ) cos
q(QVθ)

= 2−(p+q)

p
∑

k=0

q
∑

l=0

(

p

k

)(

q

l

)

cos{[(p− 2k)QH + (q − 2l)QV −m]θ}.

...

For the x-equation, p = n− 2j, and q = 2j, giving resonances when

[n± 1− 2(j + k)]QH + 2(j − l)QV = ±m.

For the y-equation, p = n−1−2j, and q = 2j+1, giving the additional conditions

[n− 1− 2(j + k)]QH + [1± 1 + 2(j − l)]QV = ±m.

...
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Results

• A normal quadrupole error excites the half-integer resonances:

2QH = ±m, and 2QV = ±m.

• Normal octopole:

±4QH = m,

±4QV = m,

±2QH = m,

±2QV = m, and

±2QH ± 2QV = m.

Notice that the resonances driven by the normal quadrupole are also driven
by the octopole.

• Normal sextupole:

±3QH = m,

±QH = m, and

±QH ± 2QV = m.
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• Normal decapoles:

±5QH ± 2QV = m,

±5QH = m,

±3QH ± 2QV = m,

±3QH = m,

±QH ± 4QV = m,

±QH ± 2QV = m, and

±QH = m.
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Lines from normal multipoles

I1 I1+1
I2

I2+1

a)

I1 I1+1
I2

I2+1

b)

a) A tune plot showing the resonance lines driven by a normal quadrupole
perturbation (heavy lines), and a normal octopole perturbation (all lines).
I1 and I2 are arbitrary integers.

b) A tune plot showing the resonance lines driven by a normal sextupole (heavy
lines), and a normal decapole (heavy and dashed lines).

• Typically: Positive slopes (diff res) OK; Negative slopes (sum res) bad.
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Lines from skew multipoles

I1 I1+1
I2

I2+1

a)

I1 I1+1
I2

I2+1

b)

a) Skew quad lines (solid) and skew octopole lines (bold and dashed).

b) Skew sextupole (bold) and skew decapole (bold and dashed) lines.

• Again: Positive slopes (diff res) OK; Negative slopes (sum res) bad.
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Periodicity

28.0 28.5Qx
29.0

29.5

Qy

Order=6    Periodicity=1
Orders: 123456

28.0 28.5Qx
29.0

29.5

Qy

Order=6    Periodicity=3
Orders: 123456
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