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Abstract

The development of frequency map analysis in particle
accelerators is reviewed. In many examples, the frequency
map is folded at large amplitudes. The fold is a singularity
in the frequency map that induces a change of the signa-
ture of the torsion. When the torsion is non definite, the
dynamical behavior of the beam needs to be studied very
precisely, as directions of fast escape may occur.

INTRODUCTION

Frequency map analysis (FMA) was introduced for the
demonstration and understanding of the chaotic behavior
of the Solar System [1], that can be considered as a dynam-
ical system with 3N degrees of freedom (DOF), where N
is the number of the planets. The method applies more
generally to any Hamiltonian system or symplectic map
(eventually with some small dissipation) [2, 3, 4]. It is
particularly interesting for systems of DOF larger than 2,
when a simple surface of section fails to provided a global
view of the dynamics of the system. FMA is now largely
used, from studies on atomic physics [5] to galactic dynam-
ics [6, 7, 8, 9, 10]. The application to particle accelerator
dynamics was very natural [11], as the motion of a single
particle in a storage ring is usually described in a surface of
section of the beam by a symplectic map of dimension 4, or
eventually of dimension 6 when the synchrotron oscillation
is also taken into account. Since, FMA has been applied to
many machines, providing in each case a picture ID of the
dynamics of the beam [12, 13, 14, 15, 16, 17]. Reviews of
the method with demonstrations of its convergence for reg-
ular trajectories can be found in [18, 19, 20]. Here, after a
brief recall of the main aspects of FMA, we will focus on
the implications of folds that appear in several examples of
frequency maps.

FREQUENCY MAPS

Although FMA is not a perturbative theory, it is useful
to describe its properties for a Hamiltonian close to inte-
grable, where a rigorous setting can be derived. Let us
thus consider a n–DOF Hamiltonian system in the form
H(I, θ) = H0(I) + εH1(I, θ), where H is real analytic
for canonical variables (I, θ) ∈ Bn × Tn, Bn is a domain
of Rn and Tn is the n-dimensional torus. For ε = 0, the
Hamiltonian reduces to H0(I) and is integrable. The equa-

tions of motion are then for all j = 1, . . . , n

İj = 0 , θ̇j =
∂H0(I)

∂Ij

= νj(I) ; (1)

The motion in phase space takes place on tori, products of
circles with radii Ij , which are described at constant veloc-
ity νj(I). If the system is nondegenerate, that is if

det

(
∂ν(I)

∂I

)
= det

(
∂2H0(I)

∂I2

)
�= 0 (2)

the frequency map

F : B
n −→ R

n

(I) −→ (ν)
(3)

is a diffeomorphism (one to one smooth map) on its image
Ω, and the tori are as well described by the action variables
(I) ∈ Bn or by the frequency vector (ν) ∈ Ω. For a non-
degenerate system, KAM theorem [21] still asserts that for
sufficiently small values of ε , there exists a Cantor set Ωε

of values of (ν), satisfying a Diophantine condition of the
form

|< k, ν >| = |k1ν1 + . . . + knνn| > κε/|k|m (4)

for which the perturbed system still possesses smooth in-
variant tori with linear flow (the KAM tori). Moreover,
these tori that survive on a totally discontinuous set of ini-
tial conditions are still properly ordered in some sense as,
according to Pöschel [22], there exists a diffeomorphism

Ψ : T
n × Ω −→ T

n × Bn; (ϕ, ν) −→ (θ, I) (5)

which is analytical with respect to ϕ, C∞ in ν, and on
Tn×Ωε transforms the Hamiltonian equations into the triv-
ial system

ν̇j = 0 , ϕ̇j = νj . (6)

If we fix θ ∈ Tn to some value θ = θ0, we obtain a fre-
quency map on Bn defined as

Fθ0 : Bn −→ Ω

I −→ (ν) = p2(Ψ−1(θ0, I))
(7)

where p2 is the projection on Ω (p2(φ, ν) = ν). For suf-
ficiently small ε, the torsion condition (2) ensures that the
frequency map Fθ0 is still a smooth diffeomorphism.
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FREQUENCY MAP ANALYSIS

The FMA method relies heavily on the observation that
when a quasiperiodic function f(t) is given numerically
over a finite time span [−T, T ], it is possible to recover
its fundamental frequencies in a very precise way, several
orders of magnitude more precisely than by simple Fourier
analysis. Indeed, let

f(t) = eiν1t +
∑

k∈Zn−(1,0,...,0)

akei〈k,ν〉t , ak ∈ C (8)

be a KAM quasiperiodic solution of our Hamiltonian sys-
tem, where the frequency vector (ν) satisfies a Diophan-
tine condition (4). The frequency analysis algorithm NAFF
will provide an approximation f ′(t) =

∑N
k=1 akeiωkt of

f(t) from its numerical knowledge over a finite time span
[−T, T ] . The frequencies ωk and complex amplitudes ak

are computed through an iterative scheme. In order to de-
termine the first frequency ω1, one searches for the max-
imum amplitude of φ(σ) = 〈f(t), eiσt〉 where the scalar
product 〈f(t), g(t)〉 is defined by

〈f(t), g(t)〉 =
1

2T

∫ T

−T

f(t)ḡ(t)χ(t)dt , (9)

and where χ(t) is a weight function. Once the first periodic
term eiω1t is found, its complex amplitude a1 is obtained
by orthogonal projection, and the process is restarted on the
remaining part of the function f1(t) = f(t)− a1e

iω1t. For
a KAM quasiperiodic solution (8), the computed frequency
νT
1 converges very rapidly towards the true frequency ν 1 as

[19, 20]

ν1 − νT
1 = O(

1
T 2p+2 ) (10)

where p is the order of the cosine window χp(t) =
2p(p!)2(1+cosπt)p/(2p)! used in (9). To construct numer-
ically a frequency map, we will fix all initial angles θi =
θi0, and for each initial action values (I) = (I1, . . . , In),
integrate numerically the trajectories over a finite time in-
terval of length T . The fundamental frequencies (ν) are
computed by the previous (NAFF) algorithm, for all initial
actions (I), and we thus construct a correspondence :

FT
θ0

: Bn −→ Ω

I −→ (ν)
(11)

that converges towards Fθ0 as T −→ +∞. This map will
thus be regular on the set of regular trajectories, and when-
ever its appears to be non regular, it will reveal the exis-
tence of chaotic orbits (see [3, 18, 19] for more details).
In practice, to study the dynamics of a beam, in a given
surface of section corresponding to a starting location on
the lattice, one can fix the two transverse momenta, and in-
tegrate the trajectories with a tracking code for a network
of initial conditions spanning both horizontal and vertical
directions (Fig.1).

Figure 1: Frequency map for an ideal lattice of the ALS.
The initial conditions are taken over a mesh in the hori-
zontal (x) and vertical direction (y) (bottom), and the cor-
responding frequencies are plotted in the frequency plane
(top). The color indicates the regularity of the orbits : from
blue (very regular), to red (very chaotic), while the absence
of a dot means that the particle escaped. This allows to eas-
ily relate the resonant features observed in the frequency
space to regions of the physical space [11, 12, 16]

EXPERIMENTAL FREQUENCY MAPS

The first frequency maps that were made [11] used nu-
merical models of an ideal lattice (Fig.1). But errors in
the magnets, misalignments, and all breakings of the lat-
tice symmetry will in general reduce considerably the sta-
ble part of the beam by increasing the strength of the non-
linearities and number of dangerous resonances. A large
effort has been made at the ALS to measure precisely these
defects [23] and the resulting frequency map provides a
more realistic vision of the current machine [12, 13, 17].
Nevertheless, the most critical way to check the real dy-
namical behavior of a beam remains the construction of an
experimental frequency map [24, 25, 13, 26].

In order to realize such a map, fast pinger magnets are
used to kick the beam horizontally and vertically in order
to span the phase space in both directions. The beam posi-
tion is recorded using turn by turn beam position monitors,
and the resulting data is analyzed using frequency analysis
algorithms. The first complete experimental frequency map
was realized at the ALS (Fig.2), probing the importance of
coupling resonances of high order in the actual behavior of
the beam, with an amazing agreement with the numerical
model [13].
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Figure 2: Experimental frequency map (a), and numerical
simulation (b) for the ALS with its current settings. Reso-
nances of order ≤ 5 are plotted with dotted lines [13] .

FOLDED FREQUENCY MAPS

In several examples, the frequency map appears to be
folded. This occurs when the terms of higher degrees in the
Hamiltonian become dominant over the quadratic terms as
the amplitude increases [15, 27, 17]. Sometimes this occurs
as the sextuploles strength have been adjusted in order to
avoid some resonant lines that are thought to be dangerous,
or merely as the result of beam-beam interactions [15] (Fig.
3). In order to better understand the implications of this
folded map, we need to look more closely to the torsion.

The torsion matrix (a generalization of tune-shift with
amplitude), is defined as the Jacobian matrix

M =

(
∂ν(I)
∂I

)
≈

(
∂2H0(I)

∂I2

)
(12)

If we remove the linear terms of the Hamiltonians by a
proper change of variable, and limit its expansion to the
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Figure 3: Frequency map of a beam-beam interaction sim-
ulation for the LHC [15].

lower orders, the Hamiltonian becomes

H =
1
2
Iτ M I + o(I2) + O(ε) , (13)

where Iτ is the transpose of I . For a fixed energy value
h, even in presence of chaotic diffusion, the variations of
the actions will thus be limited by I τ M I ≈ 2h = Cte,
and in an equivalent way, when considering the frequen-
cies, (ν) ≈ M × (I), the diffusion of the frequencies will
fulfill

ντM−1ν ≈ 2h = Cte (14)

where M−1 is a symmetric 2 × 2 matrix for a typical ac-
celerator dynamics, when the synchrotron oscillation is ne-
glected. It is known that when the torsion M is the matrix
of a definite quadratic form, finite time stability results ex-
ist, that do not persist in case of non definite torsion [28].
This can be understood as in case of non-definite torsion,
the isotropic directions of the quadratic form M will lead
to directions of fast escape :

Let M−1 =
(

a c
c b

)
. The vector V = (x, y) is an

isotropic direction if V τM−1V = ax2 + 2cxy + by2 = 0.
The discriminant of this equation in x is ∆ = y2(c2−ab) =
−y2 det(M−1). Thus, if det(M) > 0, we have ∆ < 0 :
the quadratic form is definite and there are no isotropic di-
rections. On the contrary, when det(M) < 0, ∆ > 0 and
there are 2 isotropic directions, that will act as asymptotes
for the diffusion of the frequencies. The different behavior
of the diffusion for definite or non definite torsion is illus-
trated in Figs. 4a,b. In both figures, the dynamical system
is very similar but Fig.4a will correspond to a quadratic
Hamiltonian of the form H+ ≈ I2

1 + I2
2 , while Fig.4b has

non definite torsion (H− ≈ I2
1 −I2

2 ). The chaotic zones are
very similar, but for H+, the trajectories remain bounded
over 107 iterations while for H− the resonance 1 : 1 is a
direction of fast escape, as the motion of the frequencies
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tend to bring them closer to this resonance line while for
H+ the diffusion of the frequencies tends to make them
escape the resonance.
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Figure 4: (a) Diffusion of the orbits in a symplectic map
of dimension 4 with definite torsion. The background is
the image by the frequency map of a regular mesh of initial
conditions in the action plane, obtained with only 500 iter-
ations, while the three trajectories O1, O2, O3 are obtained
by following the frequencies over 107 turns, and reveal the
actual diffusion of the chaotic trajectories in the frequency
plane. [3]. (b) Diffusion with non definite torsion. The
dynamical system is similar as in figure 4a, but the system
has now non definite torsion. The chaotic trajectories in the
frequency plane now follows hyperbolic trajectories, with
occasionally a fast direction of escape (here the resonance
(1:1)) [19].

Folded maps

As the signature of the torsion is associated to the deter-
minant of the Jacobian matrix, it becomes easy to under-

0
+

-
Figure 5: folded frequency map. The determinant of the
torsion matrix is zero on the fold, and its sign changes on
each side of the fold, as well as the signature of the torsion.

stand the torsion behavior for a 2-dimensional frequency
map. First let us recall that for a R2 −→ R2 map, the
only singularities that generically occur are folds or cusps
[29]. In all cases, the folds correspond to locations where
the determinant of the Jacobian matrix M is null. If the tor-
sion is definite in the center part of the beam, as required to
ensure its maximum stability, the torsion will become non-
definite after the fold which can lead to directions of fast
diffusion (Fig.5). One should thus analyze very carefully
the dynamical behavior after a fold. If the trajectories in
the considered region are very regular, no significant diffu-
sion will occur, and there may also be small chaotic regions
where the diffusion is limited by the presence of neighbor-
ing regular regions, as in figure 4b, but one needs to check
very carefully that no region of fast escape (as the 1:1 res-
onance in Fig. 4b) are present in the operating condition of
the machine.

In fact, if there are directions of fast escape, these may
be detected with traditional tracking of the particles, but in
cases of a double folded frequency map (Fig.6), the track-
ing may not reveal any escape, as the possible unstable or-
bits resulting from non-definite torsion are still bounded by
the region of definite torsion that lays after the second fold.
One should be aware that these designs are potentially very
unstable. Indeed, in a real machine, the existence of er-
rors in the lattice will decrease significantly the stable zone
of the beam. The outer part of the beam may thus be de-
stroyed, leading to possibility of escape for the particles in
the non-definite torsion region, and the only usable part of
the beam will remain the inner region with definite torsion.
It is clear that in this case, all the efforts made in the design
to avoid some resonant lines by bending the frequency map
become totally vain.

Additionally, some analytical computation of the torsion
could also be useful for the determination of the possible
isotropic directions and the design of a lattice for which
they are not harmful.
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Figure 6: 2-folded frequency map.
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grees of Freedom, C. Simò ed, Kluwer, 134–150 (1999)

[20] Laskar, J., Frequency map analysis and quasiperi-
odic decompositions. preprint (www.bdl.fr/Equipes/ASD-
/preprints/prep.2003/laskar porq1.pdf) (2003)

[21] Arnold, V.I., Kozlov, V.V., Neishtadt, A.I., Mathematical as-
pects of classical and celestial mechanics, Dyn. Systems III,
V.I. Arnold, ed., Springer, New York. (1988)
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