
Strong focusing

Weak focusing rings tend to have beams with large transverse dimensions.

By using alternating focusing and defocusing lenses (or gradient dipoles) we
can achieve stronger focusing with higher betatron tunes.

1 2

Converging double lens: parallel beam from left. f1 = 130, f2 = −70.

1 2

Converging double lens with quad strengths inverted. f1 = −130, f2 = 70.
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FODO lattice with periodic cells. Cell: QF drift QD drift.

• Consider a general 2×2 transport matrix for periodic cell

M =

(

a b
c d

)

.

• Transport matrix for 5-cells: M5.

• For a ring, we might just as well take our unit cell to be the 1-turn map.

• Eigenvalues can tell us about stability.
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Some general properties of square matrices

Characteristic polynomial of an m×m matrix M:

PM(λ) = |M− λI| =
m
∑

j=0

Ajλ
j =

m
∏

j=1

(λ− λj).

• Characteristic equation: PM(λ) = 0.

• Cayley-Hamilton theorem: PM(M) = 0.

• Am = 1.

• A0 = PM(0) = |M|.
• A1 = −tr(M) =

∑m
j=1Mjj .

• Since PWMW−1(λ) = PM(λ), all Aj are invariant
under similarity transformations of the form: M → WMW−1.
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Eigenvalues of a 2x2 matrix

• The eigenvalues of the 1-turn (or periodic cell) matrix can tell us about the
stability.
• Characteristic equation: λ2 − (a+ b)λ+ 1 = 0,

• Since λ1λ2 = |M| = 1, we must have λ1 =
1

λ2
.

• Matrix is real, characteristic equation has only real coefficients. So
either
• both roots are real,
• or λ1 = λ∗2, (when λ1, λ2 6∈ R.)

λ1 =
1

2

[

tr(M) +

√

(tr(M))2 − 4

]

, λ2 =
1

2

[

tr(M)−
√

(tr(M))2 − 4

]

.

• Note: Some symplectic matrices are defective, e. g.:

(

1 b
0 1

)

has only

one normalized eigenvector

(

1
0

)

.
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Liapunov stability

Definition of Liapunov stability:
A point ~x0 is called a fixed point of the map M, if M~x0 = ~x0. A system is

said to be Liapunov stable about a fixed point, ~x0, if for each ǫ > 0, there exists
a δ > 0 such that if ‖~x− ~x0‖ < δ, then ‖Mn~x−Mn~x0‖ < ǫ for all 0 < n <∞.

• That is, there is some neighborhood about the fixed point which remains
bounded for all time.

• Some obvious symplectic unstable examples:

thin quad :

(

1 0
− 1

f
0

)

,

drift :

(

1 ℓ
0 1

)

,

shear :

(

1.1 0
0 1

1.1

)

.
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Example of a general 2×2 symplectic matrix

M =

(

a b
c d

)

, with fixed point ~x0 =

(

0
0

)

.

• Identity matrix is trivially stable.

• Assuming eigenvalues are not degenerate, and that b 6= 0 we can find two
independent eigenvectors:

(

a b
c d

)(

b
x

)

=

(

ab+ bx
cb+ dx

)

=

(

λb
λx

)

x = λ− a from top row,

x =
bc

λ− d
from bottom row.

So we must have bc = (λ− a)(λ− d) = λ2 − (a+ d)λ+ ad,

which is identical to the characteristic function, since ad− bc = 1.
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Hence we may write our independent eigenvectors as

~v1 =

(

b
λ1 − a

)

, and ~v2 =

(

b
λ2 − a

)

.

Expand ~x 6= ~x0 in terms of ~v1 and ~v2:

~x = A~v1 +B~v2.

After n turns we have a deviation

Dn = ||Mn~x−Mn~x0|| = ||Aλn1~v1 +Bλn2~v2|| < |λ1|n |A| ||~v1||+ |λ2|n |B| ||~v2||

Since λ2 = 1
λ1

, the motion can be unstable if either |λj | 6= 1.
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Real and unstable. Complex and stable.

• Real eigenvalues: λ1 =
1

λ2
, when tr(M) ≥ 2.

• Non-real eigenvalues: λ1 =
1

λ2
, and λ1 = λ∗2 ⇒ on unit circle,

i. e. complex and not real when |tr(M)| < 2.

λ1,2 =
1

2

[

tr(M)±
√

(tr(M))
2 − 4

]

.
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For |tr(M)| < 2, write: cosµ = 1
2 tr(M), for some real angle µ.

Then we have

λ± = cosµ±
√

cos2 µ− 1 = cosµ± i sinµ = e±iµ.

For |tr(M)| > 2, we can write with µ > 0:

λ± = coshµ±
√

cosh2 µ− 1 = coshµ± sinhµ = e±µ.

For |tr(M)| = 2, only M = ±I are stable.

But this is right on the borderline of stability. (Not good.)
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Consider the stable motion case with −2 < tr(M) = 2 cosµ < 2 for

M =

(

a b
c d

)

.

Define k = (a− d)/2. Then the diagonal elements can be written as

a = cosµ+ k, and d = cosµ− k.

ad = cos2 µ− k2.

1 = ad− bc.

bc = ad− 1 = cos2 µ− k2 − 1. = −k2 − sin2 µ.

sinµ 6= 0, since | cosµ| < 1.

Replace k by α sinµ for some real parameter α, so

bc = −(1 + α2) sin2 µ, and partition bc by a parameter β so that

b = β sinµ,

c = −1 + α2

β
sinµ.
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So for the stable region with real parameters α, β, γ, and angle µ:

M =

(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)

,

where γ =
1 + α2

β
.

Since the sign of µ is ambiguous, we may take both β and γ to be positive.

Define J =

(

α β
−γ −α

)

, then

|J| = γβ − α2 = 1.

J2 =

(

α2 − γβ 0
0 α2 − γβ

)

= −I.

M = I cosµ+ J sinµ = eJµ.

α, β, and γ are frequently called Twiss parameters, though why is unknown.
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FODO cell example

0.0 20. 40. 60. 80. 100. 120. 140. 160. 180. 200.
s (m)

δE/ p 0c = 0 .

Table name = TWISS

Simple FODO lattice
Linux version 8.23/08 04/01/13  09.49.11

12.

14.

16.

18.

20.

22.

24.

26.

28.

β
(m

)

0.0

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

D
(m

)

β x β y DxDy

L = 189.664 m,

QH = 1.8765,

QV = 1.4106

βH0 = 19.655 m

αH0 = −0.966

βV0 = 17.840 m

αV0 = 0.913

Calculated and plotted with MAD8.
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Mturn =







1.390329 −13.764241 0.000000 0.000000
0.068876 0.037379 0.000000 0.000000
0.000000 0.000000 −0.360158 9.499991
0.000000 0.000000 −0.054739 −1.332692






.

cosµH =
1.390329 + 0.037379

2
= 0.77581,

sign(sinµH) = −1, (since βH > 0),

µH = 2π − cos−1(0.77581) + 2πn = 5.5074 + 2πn,

sinµH = −0.70029,

QH =
5.5074

2π
+ n = 0.87653 + n,

βH =
−13.764241

sinµH

= 19.655 m,

αH =
1.390329− 0.037379

2 sinµH

= −0.966,

γH = −0.068876

2 sinµH

= −0.098353.
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Analytic approach

Recall our equations of motion from Chapter 3:

x′′ + kx(s)x =
δ

ρ(s)
, and

y′′ + kx(s)y = 0,

where

kx(s) =
1

ρ2
+

q

p0

∂By

∂x
, and

ky(s) = − q

p0

∂By

∂x
.
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Hill’s equation

For now with δ = 0, let’s use for either plane:

d2z

ds2
+ k(s)z = 0.

For a ring, we have a periodic guide field

k(s+ L) = k(s).

where L is the length of the period, such as the circumference of the ring.

• Quasiperiodic solutions. From Floquet’s theorem, solutions have form:

z(s) ∼ Aw(s) eiΨ(s), where

• w(s) has the same periodicity as k(s), and
• Ψ(s) is a nonperiodic phase of the oscillations, aka betatron phase.
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z(s) = w(s) eiΨ(s).

z′(s) = (w′ + iwΨ′)eiΨ(s).

z′′(s) = (w′′ + iw′Ψ′ + iwΨ′′)eiΨ + (w′ + iwΨ′)iΨ′eiΨ

= (w′′ − wΨ′2)eiΨ + i(2w′Ψ′ + wΨ′′)eiΨ.

0 =
z′′ + kz

eiΨ
= (w′′ − wΨ′2 + kw) + i(2w′Ψ′ + wΨ′′)

1. w′′ + kw − wΨ′2 = 0. (Called the eikonal equation.)

2.
2w′

w
+

Ψ′′

Ψ′
= 0. integrate: 2 logw + logΨ′ = arbitrary const → 0.

3. Ψ′ =
1

w2
.

4. 1 and 3 combine to give: w′′ + kw − 1

w3
= 0.
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General solution in noncomplex form:

z = Aw cosΨ +Bw sinΨ.

z′ = A(w′ cosΨ− wΨ′ sinΨ) +B(w′ sinΨ + wΨ′ cosΨ).
(

z
z′

)

= F

(

A
B

)

, with

F =

(

w cosΨ w sinΨ
w′ cosΨ− wΨ′ sinΨ w′ sinΨ + wΨ′ cosΨ

)

.

Initial conditions:
(

z0
z′0

)

= F0

(

A
B

)

, ⇒
(

A
B

)

= F−1
0

(

z0
z′0

)

.

Propagate to s:
(

z(s)
z′(s)

)

= F(s)F−1
0

(

z0
z′0

)

,

so we have

M(s) = F(s)F−1
0 .
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F =

(

w cosΨ w sinΨ
w′ cosΨ− wΨ′ sinΨ w′ sinΨ + wΨ′ cosΨ

)

.

|F| = w cosΨ(w′ sinΨ + wΨ′ cosΨ)− w sinΨ(w′ cosΨ− wΨ′ sinΨ)

= w2Ψ′(cos2 Ψ+ sin2 Ψ)

= 1.

F−1 =

(

w′ sinΨ + wΨ′ cosΨ −w sinΨ
−w′ cosΨ + wΨ′ sinΨ w cosΨ

)

.

M =

(

w cosΨ w sinΨ
w′ cosΨ− wΨ′ sinΨ w′ sinΨ + wΨ′ cosΨ

)

×
(

w′
0 sinΨ0 + w0Ψ

′
0 cosΨ0 −w0 sinΨ0

−w′
0 cosΨ0 + w0Ψ

′
0 sinΨ0 w0 cosΨ0

)


 18�

USPAS: Lectures on Strong Focusing
Waldo MacKay January, 2013



After grundgy algebra:

a(s) =
w(s)

w0
cos [Ψ(s)−Ψ0]− w(s)w′

0 sin [Ψ(s)−Ψ0] ,

b(s) = w(s)w0 sin [Ψ(s)−Ψ0] ,

c(s) = −1 + w(s)w0w
′(s)w′

0

w(s)w0
sin [Ψ(s)−Ψ0]

−
[

w′
0

w(s)
− w′(s)

wo

]

cos [Ψ(s)−Ψ0] ,

and

d(s) =
w0

w(s)
cos [Ψ(s)−Ψ0] + w0w

′(s) sin [Ψ(s)−Ψ0] .
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Look at full turn matrix starting from s = 0 to s = L
with Ψ0 = 0, Ψ(L) = µ, and w(L) = w(0) = w0.

For simplicity, we can drop the arguments:

a = cosµ− ww′ sinµ,

b = w2 sinΨ,

c = −1 + w2w′2

w2
sinΨ−

[

w′

w
− w′

w

]

cosΨ(L),

d = cosΨ + ww′ sinΨ.

Compare with

M =

(

a b
c d

)

=

(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)

.

β = w2,

α = −ww′ = −β
′

2
,

γ =
1 + w2w′2

w2
=

1 + α2

β
.
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Since the matrix M(s+ L|s) from s to s+ L must be identical for each turn,

The Twiss parameters must also be periodic functions of the ring:

k(s+ L) = k(s),

w(s+ L) = w(s),

β(s+ L) = β(s),

α(s+ L) = α(s),

γ(s+ L) = γ(s),

• The α(s), β(s), and γ(s) functions are also called Courant-Snyder functions.

•
√

β(s) is also called the envelope function.

z(s) = A
√

β(s) cos (Ψ(s)) .
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More generally, for a nonperiodic portion of the ring or a nonperiodic beam line:

M(s) =F(s)F−1
0

=









√

β(s)
β0

[cosµ(s) + α0 sinµ(s)]

− [α(s)− α0] cosµ(s) + [1 + α0α(s)] sinµ(s)
√

β0β(s)

√

β0β(s) sinµ(s)

√

β0
β(s)

[cosµ(s)− α(s) sinµ(s)]









=

(

C(s) S(s)
C ′(s) S′(s)

)

,

with
C(0) = S′(0) = 1, and S(0) = C ′(0) = 0.
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Betatron tunes

For the full turn we have

µ =

∫ s+L

s

Ψ′ ds =

∫ s+L

s

1

w2
ds =

∫ s+L

s

1

β(s)
ds = 2πQ.

For x and y, respectively: QH =
1

2π

∮

ds

βH(s)
, and QV =

1

2π

∮

ds

βV(s)
.

• Note that I can start the full turn anywhere along the circumference.
The integral will always be the same.

If the ring consists of N cells, each of period L:

Q =
N

2π

∫ s+L

s

ds

β(s)
.
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Fractional tune

cosµ =
a+ b

2
=

tr(M)

2

• Fractional tune: q =
1

2π
cos−1

(

tr(M)

2

)

.

• The total tune Q = n± q for some integer n.

• 4×4 matrix with uncoupled motion:

M =

(

MH 0

0 MV

)

. (2×2 blocks.)

qH =
1

2π
cos−1

(

tr(MH)

2

)

.

qV =
1

2π
cos−1

(

tr(MV)

2

)

.
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Courant-Snyder invariant

z(s) =

√

β

β0
[cosΨ + α0 sinΨ] z0 +

√

ββ0 sinΨ z′0

= β
1

2

[

z0√
β0

cosΨ +

(

z0√
β0
α0 +

√

β0 z
′
0

)

sinΨ

]

.

We can write this in the form

z(s) =
√

Wβ(s) cos[Ψ(s) + Ψ0],

where √
W cosΨ0 =

z0√
β0
,

√
W sinΨ0 = −

(

z0√
β0
α0 +

√

β0 z
′
0

)

.
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Squaring and adding gives the constant:

W =
1

β0

[

(1 + α2
0)z

2
0 + 2α0β0z0z

′
0 + β2

0z
′2
0

]

= γ0 z
2
0 + 2α0 z0z

′
0 + β0 z

′2
0 .

For simplicity, write Ψ(s) + Ψ0 = ψ, β(s) = β, and α(s) = α.

z(s) =
√

Wβ cosψ.
√
W cosψ =

z√
β
.

z′(s) =
1

2

√

W
β
β′ cosψ +

√

Wβ ψ′ sinψ = −
√

W
β

{α cosψ + sinψ} .
√
W sinψ = −

√

β z′ − α
√
W cosψ = −

√

β z′ − αz√
β

W =
z2

β
+

(βz′ + αz)2

β
=

1

β
[(1 + α2)z2 + 2αβ zz′ + β2z′2]

= γ z2 + 2α zz′ + β z′2.
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Courant-Snyder invariant

• γ(s) z(s)2+2α(s) z(s)z′(s)+β(s) z′(s)2 = W is an invariant.

(z0,0)

(0,z′0)

(z1,z′max)
(zmax,z′1)

z’

z

• Area= πW = πz0z
′
max = πzmaxz

′
0.

• zmax =
√
Wβ at z′1 = −α

√

W

β
.

• z′max =
√Wγ at z1 = −α

√

W

γ
.

• z0 =
√

W

γ
.

• z′0 =
√

W

β
.
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z

z′Frame 1

β=2,  α=−1.5,  γ=1.625W=1200

z

z′Frame 2

β=5,  α=0,  γ=0.2 W=1200

z

z′Frame 3

β=2,  α=1.5,  γ=1.625W=1200

z

z′Frame 4

β=0.5,  α=0,  γ=2.0 W=1200

Linear tracking

• Single particle.

• 4 cases with same W
• 100 turns each.

• Ellipse areas equal.

• Different β and α.

• Frac. tune q = 0.115.

Notes for the curious:

• Units for W and β:
pt (1/72 inch)

• Why?
• It’s PostScript.
• I’m demented.
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Reminder to Waldo: Run demos:

• http://www.toddsatogata.net/fodo1.gif

• fodo1.tcs|gnuplot

• split2 -i nodisp.init -f coast.cdr
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Emittance

z

z′ Tracking of 7 particles for 100 turns each.

• Note similar ellipses – diff. areas.

• Ellipses don’t cross.

• Any particles within red ellipse stay
withint the blue ellipse.

• Any particles outside stay outside.

We can pick some fraction f of the beam
and define the area of the corresponding
ellipse as πǫf .

• ǫf is called the emittance.

• Conventions (#σ for Gaussian approx.): rms (1σ), 90% (4.6σ), 95% (6σ).
Convention depends on the which lab, accelerator, or book,

e. g., electron rings: rms; RHIC: 95%, Conte & MacKay: 90%.
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2-d Gaussian distribution

−0.008

−0.006

−0.004

−0.002

 0
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 0.004

 0.006

 0.008

−0.04 −0.03 −0.02 −0.01  0  0.01  0.02  0.03  0.04

x’

x [m]

1σ
95%
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 0.008
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Nfit  =  29972
Ngen = 30000

 0

 500

 1000

 1500

 2000

 2500

−0.04 −0.03 −0.02 −0.01  0  0.01  0.02  0.03  0.04

x

Bin:  2.0 mm
σ = 10.0 mm

Nfit  =  29955
Ngen =  30000

< x > =  0.00 mm
Ngen = 30000 particles

β = 10 m.

α = 2

γ = 0.5

εrms = 1 µ m. (only 39.35%)
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Adiabatic invariants

• As the beam is accelerated, the particles gain energy.

• Since the energy increase is much slower than the betatron oscillations,
we may use the adiabatic approximation,

i. e. slow approximately uniform acceleration of particles,
with no heating of the beam in its rest system.

• Using the Poincaré–Cartan theorem, we have

I =

∮

p dq ≈ constant,

where p and q are canonical conjugate variables.

• For horizontal motion, one has q = x, and

px = γmẋ = γm
ds

dt

dx

ds
= (βγmc)x′ = px′.

Note that here β and γ are the relativistic factors and not the envelope functions.
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• The horizontal invariant becomes

IH = p

∮

x′ dx = p(Area) = pπǫH = πmcβγǫH = πmcǫ∗H.

• Similarly the vertical invariant is

IV = πmcβγǫV = πmcǫ∗V.

• The normalized emittances are given by

πǫ∗H = βγπǫH, and πǫ∗V = βγπǫV.

If the energy is adiabatically increased, the area of the ellipse in the xpx-
plane will remain constant, but the area of the ellipse in the xx′-plane will shrink.
This effect of shrinking area in the xx′-plane is called adiabatic damping.
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Ionization profile monitor (IPM)
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AGS IPM measurment of Adiabatic Damping
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Dispersion

Equation of motion:

d2x

ds2
+ k(s)x =

1

ρ(s)
δ, with δ =

∆p

p0
.

Write solution in the form:

x(s) = C(s)x0 + S(s)x′0 +D(s)δ0,

where

C(0) = S′(0) = 1, (cosine like)

S(0) = C ′(0) = 0, (sine like)

D(0) = D′(0) = 0.

The slope of the trajectory is then clearly given by

x′(s) = C ′(s)x0 + S′(s)x′0 +D′(s) δ0.

Matrix equation assuming no electric fields (i. e. constant energy):




x
x′

δ



 = M





x0
x′0
δ0



 =





C(s) S(s) D(s)
C ′(s) S′(s) D′(s)
0 0 1









x0
x′0
δ0



 .
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Consider M as the 1-turn matrix. Its eigenvalues are

λ1,2 =
1

2

[

tr(M2×2)±
√

(tr(M2×2)
2 − 4

]

= e±iµ, and λ3 = +1.

Let us write the eigenvector corresponding to λ3 as




ηδ
η′δ
δ



 =





η
η′

1



 δ.

The periodic function η is called the dispersion function.





η
η′

1



 =





C(s) S(s) D(s)
C ′(s) S′(s) D′(s)
0 0 1









η
η′

1





Solving this for η and η′ yields

η(s) =
[1− S′(s)]D(s) + S(s)D′(s)

2(1− cosµ)
,

η′(s) =
[1− C(s)]D′(s) + C ′(s)D(s)

2(1− cosµ)
.
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• In general, the matrix’s dispersion term D(s) 6= η(s), but rather

η(s) =
dx

dδ
, whereas D(s) =

∂x

∂δ
.

(Some authors have muddled this point by using D(s) for both quantities.)

• xp(s) = η(s)δ is the inhomogenious part of the trajectory due to dispersion.

• Total horizontal trajectory component: x(s) = xβ(s) + xp(s).
• xβ is contribution from betatron oscillation.

• Momentum spread σp smears beam out with σxp
= η

σp
p0
.

• Total horizontal spread:

σx =

√

σ2
xβ

+

(

η
σp
p0

)2

=

√

βxǫrms +

(

η
σp
p0

)2

.

• Must add spreads from independent variable in quadrature.
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Momentum compaction

• Momentum compation: αp =
∆L

L

/

∆p

p
with the circumference being given by

L =

∮

ds, and L+∆L =

∮

dσ, (1)

where dσ is an infinitesimal arc of trajectory referred to an off–momentum
particle, while ds is referring to a particle with the design momentum.

• Since both ds and dσ cover the same infinitesimal azimuthal angle

dθ =
dσ

ρ+ xp
=
ds

ρ
, we have dσ =

(

1 +
xp
ρ

)

ds.

• So ∆L =

∮

xp
ρ
ds.
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Using the relation, xp = η δ, produces

∆L =
∆p

p

∮

η(s)

ρ(s)
ds,

and gives the momentum compaction as

αp =
1

L

∮

η(s)

ρ(s)
ds.
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RHIC optics functions
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QH = 28.695, QV = 29.685, βH,V
∗ = 0.7m.
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AGS optics functions

0.0 10. 20. 30. 40. 50. 60. 70. 80.
s (m)

δE/ p 0c = 0 .

Table name = TWISS

gamma=25.38 with no snakes
Linux version 8.23/08 03/01/13  21.23.45

10.0

11.4

12.8

14.2

15.6

17.0

18.4

19.8

21.2

22.6

24.0

β
(m

)

0.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

D
(m

)

β x β y Dx Dy

L = 807.076 m,

QH = 8.6648,

QV = 8.7288

αp = 0.0142,

γtr = 8.407,

ξH = −23.3,

ξV = 4.099.

• Superperiodicity: P = 12. (1st superperiod + 1 dipole plotted)
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RHIC commissioning

• Yellow ring: rf finger bent inward.

• Energy loss (dE
dx

) seen each turn.


 44�

USPAS: Lectures on Strong Focusing
Waldo MacKay January, 2013




 45�

USPAS: Lectures on Strong Focusing
Waldo MacKay January, 2013



RHIC Commissioning: bad dispersion
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• Modelled with Q8-Q9 trim supplies reversed at IR’s 6 and 2.
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Horizontal beta measuerments after PS fix
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Vertical beta measuerments after PS fix


 50�

USPAS: Lectures on Strong Focusing
Waldo MacKay January, 2013


