Liouville’s Theorem (K. Steffan’s method)

In the local region of a particle, the particle density in phase space is constant,
provided that the particles move in a general field consisting of magnetic fields
and of fields whose forces are independent of velocity.

6-d density function: f(z,y,2, Du,Dy,Dz; T).

i.e. d°N = f(z,y,2, Pz,Dy,p>; t)dxdydzdp, dp, dp..
e Define a 6-d current of the particles moving in phase space:

Jo = (fi, f9, f2, fDa, [Py, fD2) = (fT, fF).

Assuming no particle creation or decay, expect continuity equation:

of -

- - Jg = 0.

ot Ve

d 0 -
e To prove we must show d—‘i = 8—{ + Vg - Jg.
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The rate of change of particles inside an arbitrary volume, V', is equal to the
negative of the total flux leaving the volume:

8t V V(?t oV V

where the last equality is the six-dimensional version of the divergence theorem
which is a special case of Stokes’ theorem in n-dimensions. Since this is true for
any arbitrary volume, the integrands of the second and fourth integrals must be
identically equal, thus proving the continuity equation.
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Vi splits into
0 0 0 0 0 0

~ T2 and vp:ﬁx—“kﬁy% +ﬁz
Yy

v:xc‘?—x +y8y 0z’ Opa

We now have
Ve Js =V (f5)+V, (fF)
= (VF) T+ f(V-D)+ (Vpf) F+ f(V, F).

But
2 12

7= (p’c + m*c*) "7 pc?,

is independent of the spacial coordinates, so

V-9=0.

Ve Js = (V) 0+ +(Vpf) F+ f(V, F)

Note: Grayed-out terms vanish.
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The force may be written as

where ¢(7) is any velocity independent force on the particle , e. g. qﬁ :
Vp - F=¢qV, - (UxB)+V, 7,
— ¢B - (Vp X 0)—qi - (V, x B) (see Appendix F)

Examine one component ofV, x v

V. x D _ 0 Py B 0 Px
D \/p202+m204 . Op \/p202+m204 apy \/p202+m204

_ e Xepy X2y
(p2c2 + m2ch) =32 (p2c2 + m2ch)—3/2 ’

so by the cyclic symmetry of variables, we find
vV, F=0.
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. 0
0= Ve - Jo —I——f

ot
= (Vf)-v + (Vpf) - F
_Ofdr Of dy Of dz of dpy, Of dp, Of dp. of
- Ox dt+6y it 0z dt +8px dt +apy dt +3pz i o
_ 4
Cdt
QED
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Comments

e Can extend to particle-particle interactions: requires a 6/N-d formalism.

e Smooth space-charge potential:
=1
V(E) = 2 S ) 43z &3y’

- dmey ) |T— T

e Liouville’s theorem not valid for nonconservative forces:
e Radiation damping.
e Passage of beam through materials (foils, targets, gas in beam pipe).
e H™ injection: electrons stripped by foil.

§ +
Foil
e Electron cooling: mixing cold electron beam with hot ion beam.

P

e Stochastic cooling does not conflict with Liouville’s theorem:
Just removes some holes between particles in the distribution.
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General Transformations

Relative to the design particle’s trajectory, we may define the initial positon of
a test particle by

X = (Azo, Apro, Ayo, Apyo, Azo, Ap.o).

where AZUO — L0,test — L0,design; etc.
At a later time, the location will be

Y = (Awy, Apg1, Ay, Apy1, Az, Ap.1).

with the similar Az = %1 test — 1 design, €tc. Given the transport function T(X' )

determined by the force equations on the particles, e. g., F = q(E + U X E), we
may write

Y =T(X).
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Expand T(X ) in a Taylor series about the design trajectory:

— 6 —

=~y 69 = é?QJj —
AY =T(0) +ZMXJ 0) AX; +5 > N (0)AX; AXy + - -

J=1 J,k=1

f(ﬁ) — 0 since it corresponds to the path of the design particle.

Keeping only the linear term

< R A e
Px1 Px1 ...
Aifz = Mz‘j AXJ = 0Axg OAPzo Apr
1=1 . . :

M is simply the Jacobian matrix of the transformation map T.

e Liouville’s theorem tells us that |M| =1 (i. e., volume is preserved).
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Canonical Momentum and Vector Potential

e Work done by a conservative force is independent of path take:

%ﬁ-d?:o.

Equivalently by Stoke’s theorem: V X F=0.
e Forces depending only on position but not velocity are conservative.

The Lorentz force depends on velocity

i = - B}
d—ZZ:F:q(E—i—fUX B),

and is not, in general, conservative.
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dp ~ —
vxF:de—fzq(wE+Vx(ﬁxB>>
dB I 3\ B
:_QWJFQ (B-V)U—(0-V)B+ (V-B)t — (V 'U)B}
0B ol o
_—qa—q_(v-V)B]

OB 0OBdr OBdy 0Bdz

I N T T T T
dB  d B,
= 00— = — — A

where is a vector potential such that B=VxA. Rearranging and swapping
the order of differentiations:

V X [% (ﬁ—i—qﬁ)] = 0.
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If we define a new canonical momentum by

—

P=p+¢A

then the corresponding canonical force

q dP
F can —
dt

1S conservative.

We should note that the choice of vector potential is not unique, since the
gradient of any scalar function ¢(z,y, z) of spatial coordinates may be added to

A without changing B, i. e.,
V x (Vo¢)=0.

Note: I tend to refer to the momentum p = ygmc as the “kinetic momentum”
when it differs from the canonical momentum.
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Relativistic Hamiltonian

For a free (no fields) particle with rest mass, m, charge, ¢, and kinetic momentum
p = ymu, we may write the relativistic Hamiltonian as

H = \/p2c® + m2c*.

—

In an electromagnetic field with potentials A(Z,t) and ¢(Z,t) such that

B=VxA,  and E:—vqb—%—f,

— —

the Hamiltonian can be given interms of canonical momentum, P = g+ qA(Z, 1),
by

H = \/(15 — qA)2¢ + m2ct + ¢o.
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Hamilton’s Equations

Using Hamilton’s equations, the equations of motion can be written as

dP dz
%——VH, and E_VP}L
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Coordinates revisited

¢
y
s=0
6
P
Z \X
Fig. 2.1: (p,y,0) = (2,9, 2) Fig. 3.2: (p,0,y) = (7,9, 2)

Normally cylindrical coordinates are written in the order (p,0,up = y) for a
right-handed orientation, whereas Cartesian coordinates are written in the order
(x,up=y, z) for a right-handed system.

e Could use z for “up”, but lots of accelerator physicists use y.

e Either figures requires a left-handed orientation for one of the two systems
cylindrical or Cartesian).

1YY USPAS: Lectures on Hamiltonian Dynamics
Iq”a Waldo MacKay January, 2013
JI



Care must be taken when transforming from the cylindrical system to the
local system. The velocity of the particle is

ar _d,
dt  dt

The kinetic momentum is then

U= rf+y@):¢f+r9é+y'g).

P =ymv = ym(rr + 06 + i)
= p 7+ peb + pyi.

In terms of the design trajectory radius, p, we may write

r=p+4x, and s = pb,

with z being the excess distance of our particle from the origin. The momentum
conjugate to x is just p, = p,, since p may be taken to be constant in piecewise
sections of the accelerator. It can be shown that a momentum coordinate which
is conjugate to the coordinate s is given by

p. = (1+ %) )
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From Fig. 3.2 we have for old coordinates in terms of the new ones ()Z ):

sz, £ = (p+x)cosh, and n=(p+x)siné,
p

and we want to construct F5(p, X) (see CM: Appendix C) with

S (9F3
E=(p+x)cos— = ——=,
p Opg
. S (9F3
n=(p+a)sin> = -2
% Opy
Integrating the two previous partial derivatives and comparing constants yields:
S .S
E3(pe, py, @,8) = —(p+ ) | pe cos Hpysin )
SO
OF
P = _8—3 = pecosl +pysin =p, =p- 2z,
x
0F35 x T
Pi=———=(14 — | (—pesinb O)=(1+—)p-s. v
P ( +p>( pe sin @ 4 p,, cos 6) ( +p>p 5
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Modifying the Hamiltonian

In our curvilinear system

H=,|m2c* +c?

2
Ds
2+ 2+( ) :
\ e Py 1+x/p

Writing this in terms of the canonical momenta,

Ps_qu
1+x/p

2
H:c\/(quAx)2+(quAy)2+( ) +m?e® +q¢,

where we define
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Interchange (¢, —H) with (s, ps):

A canonical transformation from the variables (g, p) to the variables
(Q, P) preserves the integral invariant of Poincaré—Cartan p-dg— Hdt =

P-dQ — Kdt, where K (Cj, P: t) is the Hamiltonian expressed in terms
of the new coordinates. If some coordinate g; increases in time, then
we may rewrite this invariant as

Y pidg; + (—H)dt | — (—p;)da;.
i

The conjugate momentum corresponding to t is now —H, which is just the
negative of the total energy U, so the new Hamiltonian is

H=—P(x, Py,y, P,,t,—U;s)

2
= —qA, — (1 + %) \/(U;qu) —m?2c? — (P, —qA.)? — (P, — qA,)? .
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In the cylindrical coordinates (see Appendix F) (r,6,y), the curl of A is

> (10A, 0Ag)\ . 0A, O0A,\ . 1/(0 0A\ .
VXA_< )r+<8y 8r)9+r<8r(m49) 89)y°

Transforming to the local coordinate system, (x,y, s), gives

U A 1 0As 0Ay\ . N 1 0A, O0A,\ .
p— —_ €T —_
14+x/p \ Oy ds 1L+x/p \ Os or )7

0A, O0A:\ .
-+ — S.
ox oy
Note: an overall minus sign is applied since we have interchanged the position of
the #-like coordinate with the vertical coordinate (as mentioned back on p. 14).

For static magnetic fields which are transverse to the direction of motion,
we may write:

¢ =0, , A, =0, and A, =0,

P, = py = yBzmec, and P, = p, = yBzmc.
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e For the transverse components of magnetic field

1 0A, nd B 1 0A,
— 1N = — .
l+x/p Oy’ Y l+x/p Ox

By

e For nonzero longitudinal components (as in solenoids), life becomes a bit
more complicated as we shall see.
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Symplectic Transforms and Matrices

In accelerator physics it is usually the convention to order the canonical coordi-
nates in a vector of coordinate-momentum pairs:

7

I
X_P

\ v/

Recall Hamilton’s equations for
H=H(z, Py,y, Py, t,-U;s):

ds OP;’ a ds  Ox;
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We can write this in a matrix form as

6
dX; OH
= S;i ——, ith
dt ; iox,T
( 0 1 0 0 0 0
—1 0 0 0 0 0
g _ 0 0 0 1 0 0
o 0 0 —1 0 0 0
0 0 0 0 0 1
K 0 0 0 0 -1 O)
Note that:
o S| =1,
o S?=—-1.
e St =-8,
e S 1 =_8.
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Consider the transport of a beam from sg to s1, T : Xg — X;.
The slopes of the components may be written as

Xmi dXO ; ﬁXlz
= Z Mij —‘7, where Mij = 8X0j

is the Jacobian matrix for T.
Since the particle motion is reversible, we also have T~! : X; — X, with slopes

Xmz dXo — aXOz
= Z )i . ‘7, where (M)@'jl = X1

is the Jacobian matrix for T 1.

dXh OH 90Xk e OH

S’L Sz S’L ) M . .

Z ’ (7X1 Z 70Xk 0X1; Z i (( ) >3k 0Xox

T gk j.k

0X1

ds
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But we also have

dXo; OH dX
dso = Z Si; Xy, or in matrix notation d—so = SVXOH

or solving for the divergence of H:

Ve H=8" 19%0

ds
X, dXo 1\Ta—19X0
M —=S(M S —
ds ds ( ) ds

So it must be that

e Symplectic condition: S=M"SM =MSM",
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e A matrix M which satisfies MTSM = S is called a symplectic matrix.
e Note also that S is symplectic since STSS = (—S)(-I) = S.

Generalize to 2n dimensions where S is a 2n X 2n matrix with 2 x 2-blocks

0 1
-1 0
along the diagonal and zeroes™ everywhere else.

From the symplectic condition: 1 =|S| = [M'SM| = |M|? = |M|=&1.

e Actually, M| = 41 only.
e “Simple” proof using Brioschi’s theorem:

For any antisymmetric matrix A, Pf(M*AM) = det(M)Pf(A).

Taking A = S we then |[M| = Pf(S) = 1.
(Simple except, what the #&*!$ is a pfaffian?)

e A.Dragt, Lie Methods for Dynamics with Applications to Accelerator Physics
(2011) for different proof. (http://www.physics.umd.edu/dsat/)

* With an “e” in honour to Dan Quayle aka Mr. Potatoe.
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e Symplectic matrices form an algebraic group Sp(2n, R).
e Since the representation depends on the form of S, I usually write
Sp(2n,R;S) for our particular representation.
e Another common representation in use for a different ordering of the
canonical coordinate-momentum vector is Sp(2n, R, E) for

1)

P,
b,
\ 7./
1 0 0 0O 0 O
where Is=10 1 0], and O0s=(0 0 O
0 0 1 0O 0 O
e Note that in general Sp(2n,R;S) # Sp(2n,R, E).
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Symplectic inverse and conjugate

The inverse of a symplectic matrix M can easily be found by

S =M!'SM,
SSM~! =sMm's,
M~ =_smMm!'s =stm'!s.

It is convenient to define the symplectic conjugate of a square matrix N of the
same size (same # of rows and columns) by

~

N =SI'NTS.

—~—

Clearly M~ = M, if M is symplectic.
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Useful 2-d matrix info

Consider a general 2x 2 matrix N = (a b) :

c d
Nt oTnTa 0 —1 a C 0 1 o d —b
N_SNS_<1 O)(b d)(—l O)_<—c a )’
N 1 d —b
If |N| £ 0, th N-l=__ = .
* IH|N|#0, then N| ad—bc(—c a)

e Note: While this simple inverse formula works for 2 x 2 matrices, it
won’t work for higher order matrices in general; only the symplectic
matrices.

e If a 2Xx2 matrix has a determinant of 1, then it is symplectic.
e Not in general true for 4 x4 and higher order matrices.
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More transformations of Hamiltonian

Let us rescale our previous Hamiltonian (from p. 18)

2
H=—qA, - (1 ' g) \/<U . w) —m?c? = (Pr — qA2)* — (Py — q4y)?

0 c

by dividing by the design kinetic momentum pg:

ot () O )
Po Do P Poc€ Do Do Do
(This is not rigorously a cannonical transformation — just a change of units.)

Consider transport through transverse magnetic field only.
Then we may use A, =A4,=0 = P, =p,, and P, =p,.
Also we have ¢ = 0 and E =0.
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1 . 2 2 2
(226
Po Po P Po Po Po
Define new rescaled Hamiltonian

Hl(xa Wy, Y, wya t? _U/p()? S)

q x U \?> me\ >
=——As—(1+ = — ) — =) —wZ—w?
Po P PoC Po
Px

where w, = —, and w, = &.
Po Po

Want to use coords relative to design traj.: At =t—ty, and —AU =Uy—U.

A _
5 — p_p Po

Po Po
which we would like to use as a new canonical momentum conjugate to some

new coordinate z, yet to be determined.

Define the fractional momentum deviation: :
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Construct another generating function from Appendix C:

F5(old coord, new mom;indep var) : F5(t,0;s).

o6 ot  po

Ap U? AU 1 AU
We may write 0 = = = — ——, so then
Y po  pic2 Up  B§ Uy
OF5 U c AU c 5
—— =——=—— — = ——(1+4 3§9).
ot Po Bo Up 50( 50)

Integrating with respect to ¢ and setting tg = s/vg gives

ct &
Fy(t,058) = _E(l +650) +9(d;5) = %(1 + 850)(to — t) + g(; )
1+ 820
= L0 (s wt) + 9161 9).
B
L . . OFy .
so our new longitudinal coordinate is 2z = 5 = s — Vot , but g(d;s) is an

arbitrary integration constant which we are free to choose.
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OF5(t, 6;
H:H(x’wx’y7wy7z75;8):Hl(wvwwavayata_U/pO;S)+ 2(88 S)

(9F2 1 89
02 _ 15+ 9
9s 32 "7 bs

H >~ H(xawxvyawya 25 57 S)

2 2
(1 2) (Yo () gy 00
Po p Poc Poc ds

qgA, ( x) 1 Og
= — — (14 = \/1+52—w§—w2 +0+ = + .
Po p ( ) Y B35 0Os
Expand square root up to quadratic terms:
1 2 2 2 1.
\/1+25+52—w%—w§:1+§[25—|—5 —wx—wy+---]—§[45 + -
1

2
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qAs x 1, 5 1 89
H ~ —(1+—-)|14+0—= J
o (—l—p)[ + 2(wx—|—wy)—|— to+ o5+ o
qAs r x0 1,6 5 1 g
== (40 - S = s ) o 0y
Po ( ) P % 2( y) 50
qgAs * x0 1, , 5 1 g
= TR+ s
Do P P 2< y) 50 ds

We can cancel the irrelevant constant terms by taking

g(s) = 5 — s
0
Paraxial approximation:
w, — Pz o P :dw:% wy = Pu o P :dy:y,.
po  p. ds po Dz dS
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Symplectic generators (integration)

Consider a magnetic field which is independent of s, i. e. Ay = As(z,y).

X(s) = M(s)Xj.

For an infinitesimal step ds, we will have
M(ds) =1+ G ds. (G called a generator)
In case of s-indenpendent field, M(ds) does not change along the trajectory.

Total transformation matrix M(s) may be written as

M(s) = lim (I—l— G %)n — &%,

n—oo

Integration without an integral sign. You may recall something like this from
the treatment of spin rotation matrices in quantum mechanics.
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Dipole magnet example

Uniform vertical field: B = Byy.

Recall from p. 20:
1 0A,

1+4x/p Oz

2
ASZ—BO (ZC—I—ZC—> .
2p

qBO( x2> r x0 1, 5 > s 1, .,
He—|\o+ | ————F+ ;@ +y )=55——+5@ " +y~).
Po 20) p P 3 ) 20°  p 2 )

Hamiton’s equations of motion:

de OH di’ OH

ds Oz’ ds = Ox’
dy O0H dy'  OH
ds Oy’ ds = Oy
dz  OH do OH

ds 06" ds = 0z
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The longitudinal time-like coordinate is a negative deviation in path length from
the synchronous particle, 2z =uv(tg —t) = s — vt.

dx ,
_ x

ds ’
dx’ B N
ds — p?  p’
i,
ds ’
dy’
)

ds ’
dz o

ds  p’
dd

©_ o
ds
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T 1 ds 0 0 0 O o
x’l\ = 1.0 0 0 % \(:1:6\
yi | _ 0 0 1 ds 0 O Yo
7 od 0 0 1 0 0 Y
21 — &5 0 0 0 1 0 20
P
\51/ \0 0 0 0 0 1 /\50)
(o p 00 0 O \
-1 00 0 0 1
0 00 p 0 0 |ds . ds
Gds=| 0 0 0 0 0 0 ?:K?:Kde.
-1 0 0 0 0 O
Ko 00 0 0 O /
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M(#) = lim <I+K€) — K¢
n—oo mn

+ ...

3!

(K6)?

_|_

2!

2
I+ K60+ (K6)

~ N
—
) _OO %IO
O OO O OO
OO OO OO
OO OO OO
%’OOOOO
O H QO O — O
~ -
|
e
~ N
QRO O O O O
O OO O OO
O OO O OO
O OO O OO
—
) _OO ﬂ/o
—
_OOOOO
N~ I
|
v

)

1 0 0 0 O
0 1 0 0 0
0 0 0 0 0

0

0
0
0
0

o O O

o O O

o O O

S QO

o O O

K* =

January, 2013
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Only a finite number of powers of K must be evaluated, since every 2n x 2n
square matrix satisfies its own characteristic function by the Cayley-Hamilton
theorem:

The eigenvalues A of K satisfy the characteristic equation

2n
0=> A;N with Ay, =1,
j=0
so the theorem gives us
2n—1
2n

K" =- " AK

§=0
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02  p4 03 9>
M =1+ K6+ K? (———+...>+K3 (———+...>

2! 4! 3! 5!
=T+ K60 +K?*(1—cos) + K> —sinb)
cos 0 psin @ 0 0 0 p(1—cosb) \
—% sin 6 cos 0 0 0 O sin 6
B 0 0 1 00 0 0
B 0 0 0O 1 0 0
—sinf  —p(l—cosf) 0 0 1 —p(f—sinbh)
K 0 0 0O 0 O 1 )

If we use a Hamiltonian using long. canonical coords. (t,w;) rather than (z,d)

A me\ 2 U
T w? — (—) —wi — wy, with wy = —,
Po Po

rather than (z,d) then the Msg obtains an extra term -+1/~2.
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