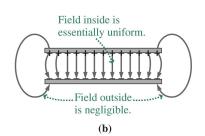


Jefferson Lab

Conducting plates with area A are a small distance d apart.



(a)

University Physics 227N/232N Old Dominion University

Chapter 23, Capacitors

Lab deferred to Fri Feb 28 Happy Valentine's Day!

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org

http://www.toddsatogata.net/2014-ODU

Friday, February 14 2014

Happy Birthday to Tyler Clippard, Simon Pegg, Teller (of Penn and Teller), Terry Gross, and Charles Thomson Rees Wilson (Nobel Prize 1959)!

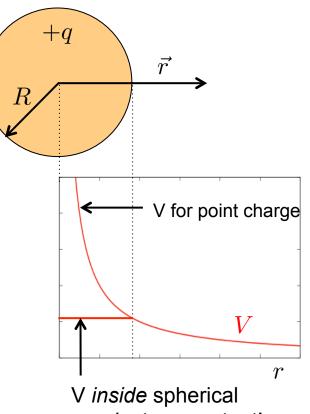
1

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N

Review: Chapter 22: Electric Potential

 Electric potential difference describes the work per unit charge involved in moving charge between two points in an electric field:

$$\Delta U_{\rm AB} = q \Delta V_{\rm AB} \quad \Delta V_{\rm AB} = -\int_{\rm A}^{\rm B} \vec{E} \cdot d\vec{r}$$


- The SI unit of electric potential is the volt (V), equal to 1 J/C.
- Electric potential *always* involves two points;
 - To say "the potential at a point" is to assume a second reference point at which the potential is defined to be zero.

where the "other point" of potential is taken

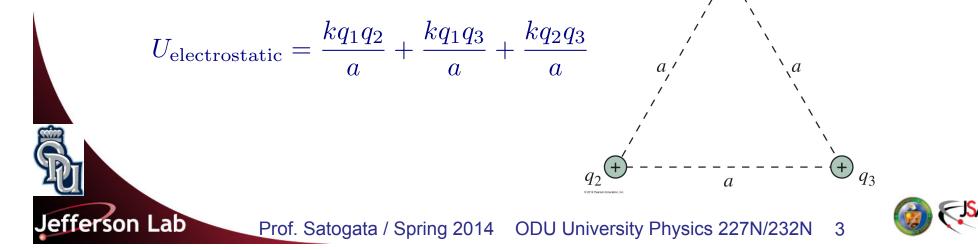
• Electric potential differences of a point charge $V_r = \frac{kq}{r}$

to be zero at infinity.

Jefferson Lab

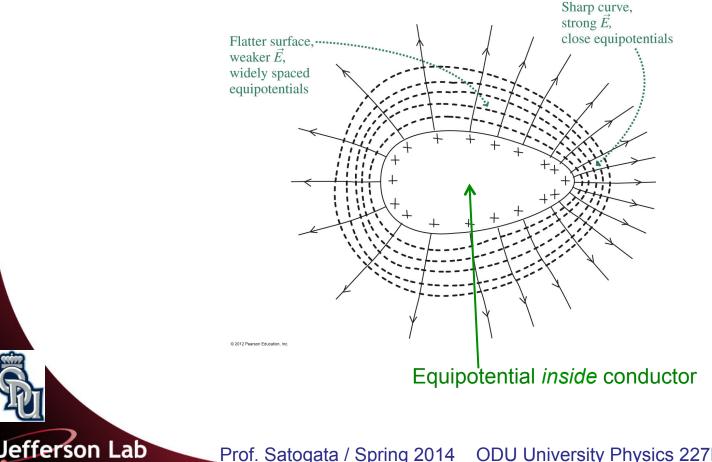
conductor: constant!

hysics 227N/

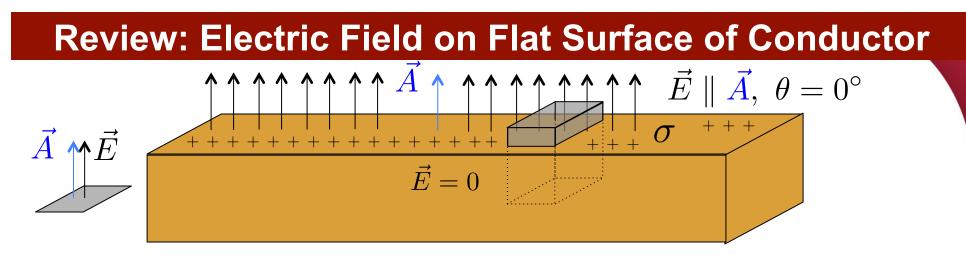


Electrostatic Energy

- So it takes work (energy) to assemble a distribution of electric charges.
 - This is **electrostatic energy** of the new configuration of charges.
 - If we put energy in, we effectively store it in the distribution of charges.
 - Each charge pair q_i, q_j contributes energy where r_{ij} is the distance between the charges in the final configuration.


$$U_{\rm ij} = \frac{kq_iq_j}{r_{ij}^2} \qquad U_{\rm total} = \sum_{ij} U_{ij}$$

Example: Three point charges assembled to form an equilateral triangle:

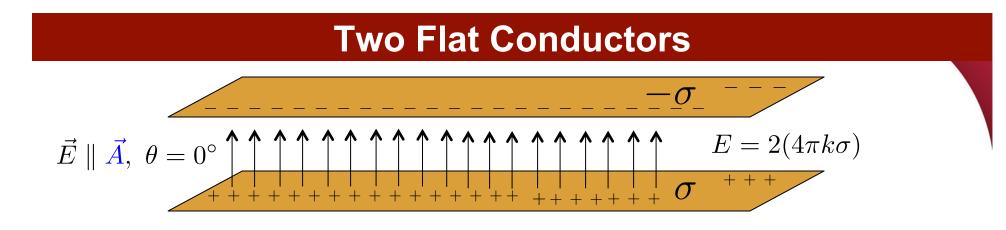


Review: Chapter 22: Equipotentials and Conductors

- **Equipotentials** are surfaces of constant electric potential.
 - It takes no work (energy) to move charges between points of equal electric potential.
 - A perfect conductor in equilibrium is an equipotential in the conductor
 - So we can move charges in perfect conductors while doing no work

We had used Gauss's law to figure out

Jefferson Lab


 $E = 4\pi \ k \ \sigma$

Independent of A or distance from the (infinite flat) conductor!!

 σ : charge per unit area of the surface (total charge divided by total area)

• What about two flat conductors with equal and opposite charges?

- What about two flat conductors (plates) with equal and opposite charges?
 - We can use this to store electrostatic energy

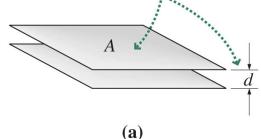
efferson Lab

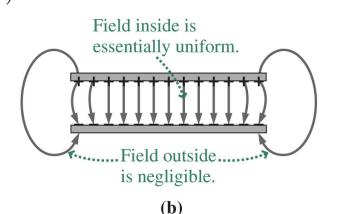
• Lots of charges are separated by a small distance

$$f_{ij} = \frac{kq_iq_j}{r_{ij}^2}$$

I

- The electric potentials V of the two flat conductors are equal and opposite
- If we connect the two potentials by a conductor, then charges will move (current will flow) until the plates and conductor are all at the same potential
 - We've created an electrostatic energy storage device: a battery

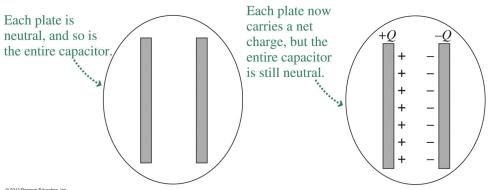

Chapter 23: Capacitors


- A capacitor is a pair of conductors, insulated from each other, and used to store charge and energy.
 - The two conductors are given equal but opposite charges.
 - The work used in separating charge is stored as electrostatic energy in the capacitor.
 Conducting plates with
 - Capacitance is the charge stored per unit potential difference: $C \equiv Q/V$ Q = CV
 - Its SI unit is the **farad** (F): 1 F = 1 Coulomb/Volt $(1 \mu F = 1 \mu C/V)$
 - The capacitance of a parallelplate capacitor is

$$C_{\text{parallel plates}} = \frac{\epsilon_0 A}{d} = \frac{A}{4\pi k d}$$

lefferson Lab

area A are a small distance d apart.



© 2012 Pearson Education, Inc.

Energy Stored in a Capacitor

- Charging a capacitor involves transferring charge between the initially neutral plates.
 Each plate now carries a net
 - The whole capacitor remains neutral, but the individual plates become charged.

- The work dW involved in moving charge dQ is dW = V dQ, where V is the potential difference between the plates.
 - For a capacitor, Q = CV, so dW = CV dV.
- Then the work involved in building up a potential difference V between the plates is

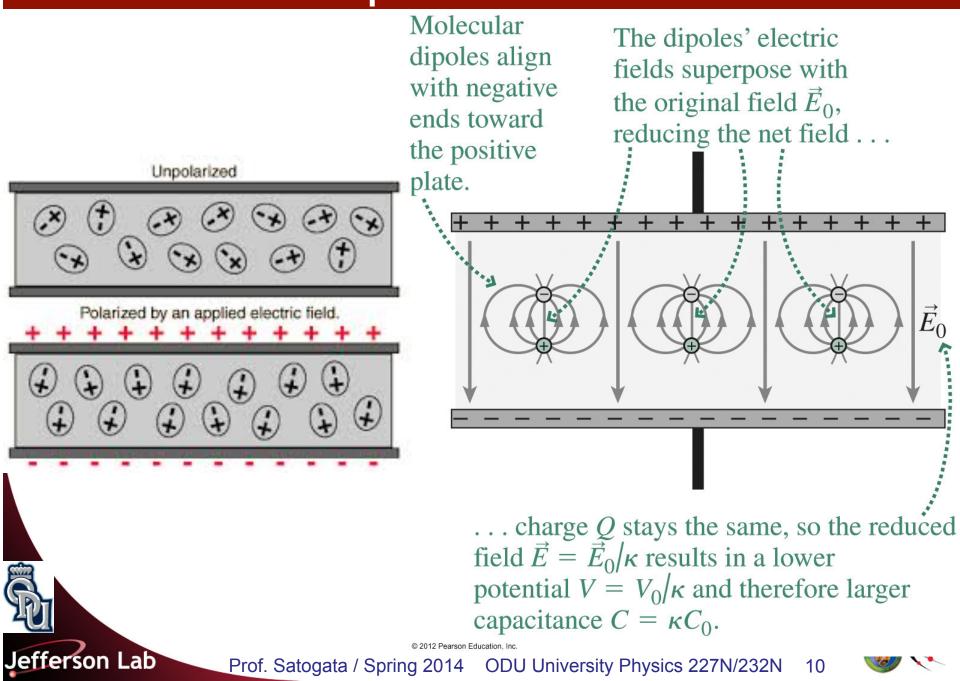
$$W = \int dW = \int_0^V (C V) \, dV = \frac{1}{2} C V^2$$

• Therefore the electrostatic energy U stored in a capacitor is $U_{\text{stored in capacitor}} = \frac{1}{2}CV^2$ efferson Lab Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 8

Practical Capacitors

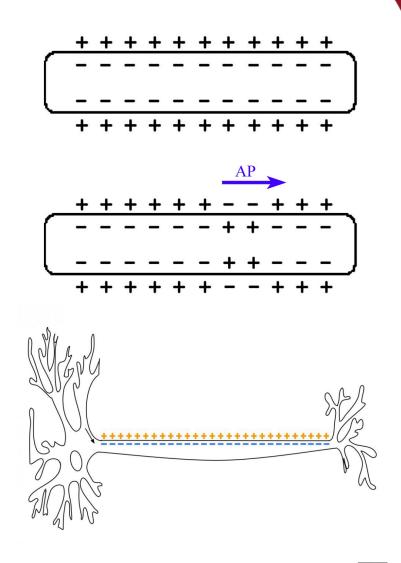
- Capacitors are manufactured using a variety of technologies, in capacitances ranging from picofarads (pF; 10⁻¹² F) to several farads.
 - Most use a dielectric material (electric dipoles) between their plates.
 - The dielectric increases capacitance C by lowering the electric field and thus the potential difference required for a given charge on the capacitor.

Typical capacitors


lefferson Lab

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 9

Microscopic View of a Dielectric



(Capacitance of Cell Membranes)

- The cell membranes of nerve cells are also capacitors
 - Nerve cells send signals by "discharging" this stored energy down the cell membrane
 - This results in a moving change of potential along the cell
 - "Action Potential"

Jefferson Lab

- Capacitance is about 7 mF/m²
- Dielectric constant $\kappa\approx 2$

Dielectric Constants

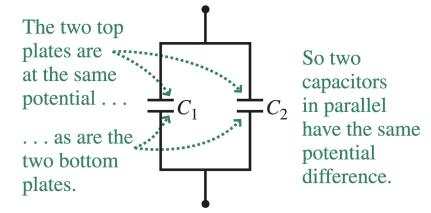
- The dielectric constant, κ, is a property of the dielectric material that gives the reduction in field and thus the increase in capacitance.
 - For a parallel-plate capacitor with a dielectric between its plates, the capacitance is

$$C = \kappa \frac{\epsilon_0 A}{d} = \kappa C_0 \qquad C_0 = \frac{\epsilon_0 A}{d} \qquad \kappa \ge 1$$

Table 23.1 Properties of Some Common Dielectrics

Dielectric Material	Dielectric Constant	Breakdown Field (MV/m)	
Air	1.0006	3	
Aluminum oxide	8.4	670	
Glass (Pyrex)	5.6	14	
Paper	3.5	14	Titanium dioxide
Plexiglas	3.4	40	<i>κ</i> =100!
Polyethylene	2.3	50	
Polystyrene	2.6	25	
Quartz	3.8	8	
Tantalum oxide	26	500	
Teflon	2.1	60	
Water	80	depends on time and purity	
© 2012 Pearson Education, Inc.			

Jefferson Lab

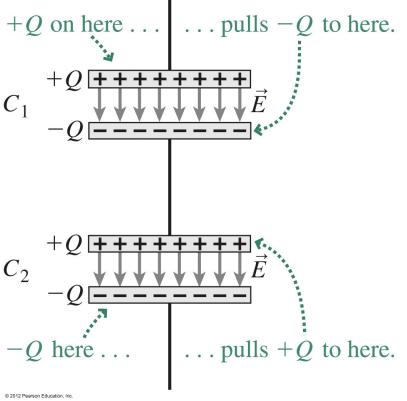

Connecting Capacitors in Parallel

- Capacitors connected in **parallel** have their top plates connected together and their bottom plates connected together.
 - Therefore the potential difference across the two capacitors is the same.
 - The capacitance of the combination is the sum of the capacitances:

$$C_{\text{parallel}} = C_1 + C_2 + C_3 + \dots$$

The maximum safe
working voltage of the combination is that of the capacitor with the lowest voltage rating.

Jefferson Lab

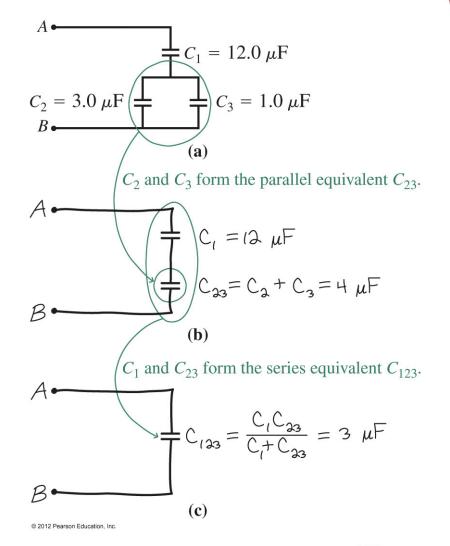

Connecting Capacitors in Series

- Capacitors connected in series are wired so that one capacitor follows the other.
 - The figure shows that this makes the charge on the two capacitors the same.
 - With series capacitors, capacitance adds reciprocally:

$$\frac{1}{C_{\text{series}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

Thus the combined capacitance is lower than that of any individual capacitor.

Jefferson Lab


 The working voltage of the combination is higher than that of any individual capacitor.

Circuits with Parallel and Series Capacitors

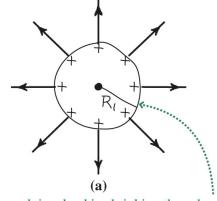
- To analyze a circuit with several capacitors, look for series and parallel combinations.
 - Calculate the equivalent capacitances, and redraw the circuit in simpler form.
 - This technique will work later for more general electric circuits.

Jefferson Lab

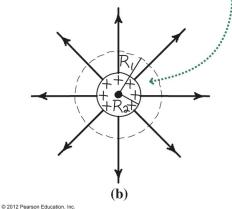
15

Energy in the Electric Field

- The electrostatic energy associated with a charge distribution is stored in the electric field of the charge distribution.
 - Considering the uniform field of the parallel-plate capacitor shows that the electric energy density is


$$u_E = \frac{1}{2}\varepsilon_0 E^2$$

• This is a universal result:


etterson Lab

- *Every* electric field contains energy with this density.
- Example: Shrinking a sphere of charge requires work, which ends up as stored electric energy.

$$U = \int u_E dV = \frac{1}{2} \varepsilon_0 \int E^2 dV = \int_{R_2}^{R_1} \left(\frac{kQ}{r^2}\right)^2 4\pi r^2 dr = \frac{kQ^2}{2} \left(\frac{1}{R_2} - \frac{1}{R_1}\right)^2 \frac{1}{R_2} \left(\frac{1}{R_2} - \frac{1}{R_2}\right)^2 \frac{1}{R_2} \left(\frac{1}{R_2} -$$

The work involved in shrinking the sphere ends up as energy in the electric field here.

