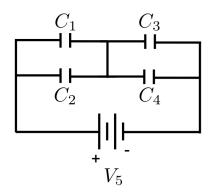
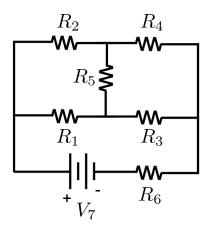
Useful Equations


Definition of capacitance: $C \equiv \frac{Q}{V}$ Capacitance of a parallel plate capacitor: $C = \kappa \frac{A}{4\pi k d}$ (κ : dielectric constant) Capacitors in parallel: $C_{\text{equiv}} = C_1 + C_2 + \dots$ Capacitors in series: $\frac{1}{C_{\text{equiv}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$ Energy stored in capacitor: $U_{\text{stored}} = \frac{1}{2}CV^2$ Definition of current: $I \equiv \frac{dQ}{dt}$ Ohm's Law, voltage drop across a resistor: V = IRPower dissipated by a resistor: $P = IV = I^2R$ (1 Watt = (1 Coulomb)(1 Volt)) Resistors in series: $R_{\text{equiv}} = R_1 + R_2 + \dots$ Resistors in parallel: $\frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

Useful Geometry Equations

Circle circumference: $2\pi r$	Circle area: πr^2
Sphere surface area: $4\pi r^2$	Sphere volume: $\frac{4}{3}\pi r^3$
Cylinder surface area: $2\pi r^2$ (ends) $+ 2\pi r L$ (side)	Cylinder volume: $\pi r^2 L$


Useful Constants

$$\begin{split} k &= 9.00 \times 10^9 \text{ N m}^2/\text{C}^2 & \epsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \text{ C}^2/\text{N m}^2 \\ 1 \text{ pF} &= 10^{-12} \text{ F} & 1 \text{ nF} = 10^{-9} \text{ F} & 1 \mu\text{F} = 10^{-6} \text{ F} & 1 \text{ mF} = 10^{-3} \text{ F} \\ \text{Electron charge: } e &= -1.6 \times 10^{-19} \text{ C} \end{split}$$

- 1. The circuit shown above has capacitors $C_1 = 1.0 \ \mu\text{F}$, $C_2 = 2.0 \ \mu\text{F}$, $C_3 = 3.0 \ \mu\text{F}$, and $C_4 = 4.0 \ \mu\text{F}$ connected by perfectly conducting wires. The EMF V_5 has a voltage across its terminals of $V_5 = 12.0 \text{ V}$, and the circuit is in a state where the capacitors are charged.
 - (a) (3 points) Find the equivalent capacitance of the capacitors.
 - (b) (3 points) Find the charges Q_1 , Q_2 , Q_3 , and Q_4 of each capacitor.
 - (c) (4 points) Find the voltages V_1 , V_2 , V_3 , and V_4 across each capacitor. Are they consistent with the voltage across the EMF?

- 2. An incandescent light bulb has a resistance of 140Ω when it is lit and 9.5Ω when it is not lit. It is plugged into a DC power supply that provides a constant voltage of 120V.
 - (a) (2 points) What current goes through the bulb just as it is plugged in, when it's not lit? What current goes through the bulb after it's lit?
 - (b) (2 points) What power does the bulb draw in both cases?
 - (c) (3 points) How many electrons pass through the bulb per second when it's lit?
 - (d) (3 points) A second light bulb is connected in series with the first one. How much power do both bulbs draw now?

- 3. The circuit shown above has resistors $R_1 = 1.0 \Omega$, $R_2 = 2.0 \Omega$, $R_3 = 3.0 \Omega$, $R_4 = 4.0 \Omega$, $R_5 = 5.0 \Omega$, and $R_6 = 6.0 \Omega$ connected by perfectly conducting wires. The EMF V_7 has a voltage across its terminals of $V_7 = 12.0$ V. This circuit cannot be reduced to just parallel and series capacitors; you have to use Kirchhoff's rules to evaluate it.
 - (a) (2 points) Draw and label arrows for the six currents in the resistors in the diagram.
 - (b) (4 points) There are four nodes in the above diagram. Select three of them and label them A, B, and C in the diagram. Using Kirchhoff's node rule and the currents you have drawn in part (a), write down the current equations for these three nodes.
 - (c) (4 points) You need three more equations, so draw three Kirchhoff loops. Using Kirchhoff's loop rule, write down the three voltage equations for these loops.
 - (d) (5 points) Solve the equations in parts (b) and (c) to find the currents in each of the resistors.