University Physics 227N/232N

Lab: Ohm's Law and (maybe) DC RC Circuits Or not: Watch Todd Improvise Gauss's Law and Ampere's Law

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-ODU

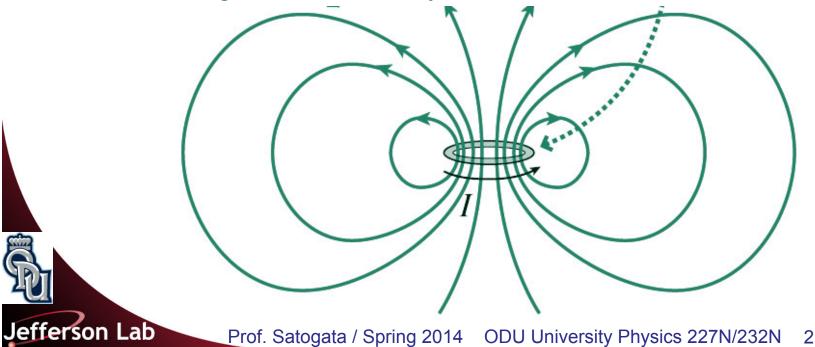
Friday, March 21 2014 Happy Birthday to Adrian Peterson, Rosie O'Donnell, Matthew Broderick, Joseph Fourier, and Walter Gilbert (1980 Nobel)

efferson Lab

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N

Current Loops Again

- Last class we talked about the magnetic fields created by current loops and made a few observations
 - Magnetic field lines are always closed loops
 - they don't start or end anywhere: there are no magnetic "charges"
 - Recall: Gauss's Law for electric fields
 - Related electric flux through a closed surface to the total amount of charge inside
 - We can write a similar equation for magnetism but simpler: the total charge enclosed is always zero!



Gauss's Law for Magnetism

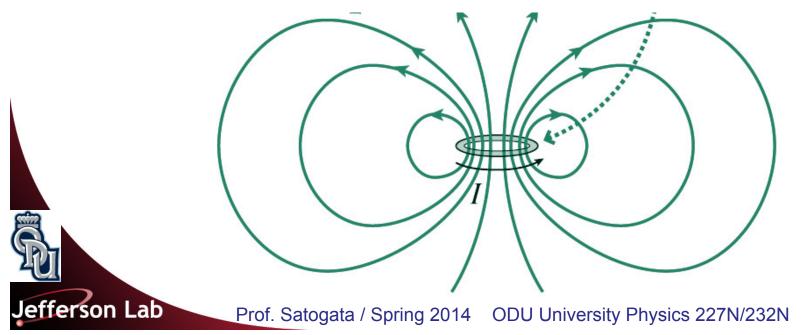
• For electric fields we had Gauss's Law:

$$\Phi_{\text{electric}} = \oint \vec{E} \cdot d\vec{A} = 4\pi k q_{\text{enclosed}}$$

For magnetic fields this becomes

$$\Phi_{\text{magnetic}} = \oint \vec{B} \cdot d\vec{A} = 0$$

• The net magnetic flux through **any** closed surface is **always** zero



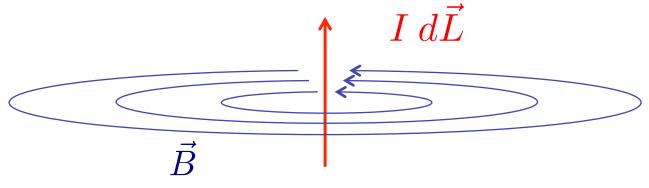
3

Gauss's Law: Applications?

 Magnetic fields we calculated with Biot-Savart are kinda complicated

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{L} \times \hat{r}}{r^2} \qquad \mu_0 \equiv 4\pi \times 10^{-7} \,\mathrm{T} - \mathrm{m/A}$$

- The current loop magnetic field is only easily calculated on the axis of the magnetic field
- The magnetic field from an infinite straight line of current is (right-hand) circles going around the current

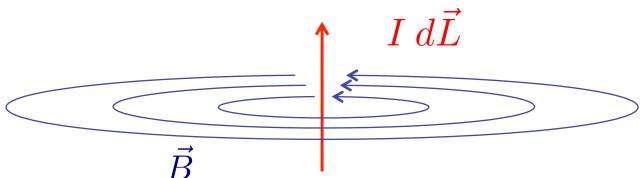


- Here calculating magnetic flux is either boring (cylindrical Gaussian surface) or hard (other surfaces)
- Gauss's Law for magnetism is more useful as a concept

Jefferson Lab

Infinite Line Current and Ampere's Law

- So Gauss's Law isn't very useful in helping us calculate magnetic fields from symmetry
 - But let's go back to the infinite line of current and its magnetic field calculated from Biot-Savart and notice something



 $B = \frac{\mu_0 I}{2\pi r}$

efferson Lab

(r is distance from line, direction is right hand around I)

 $\bullet \ (2\pi r)B = \mu_0 I$

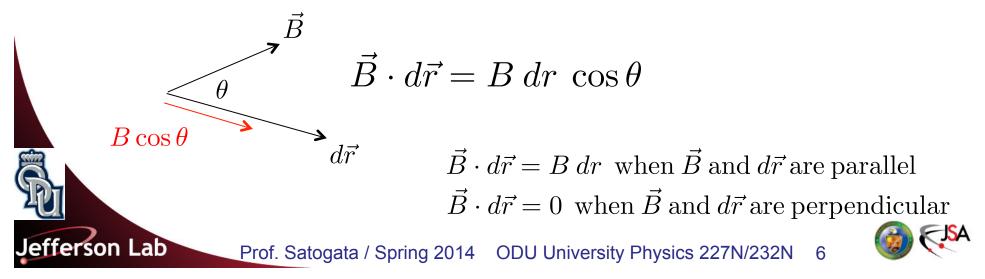
- The magnetic field lines are just circles -- and 2πr is just the circumference of a circle of radius r.
- Maybe summing up (integrating) B over the circumference of the circle is related to the total current "enclosed" by that circle

Ampere's Law

 Indeed, this was discovered to be true and is known as Ampere's Law:

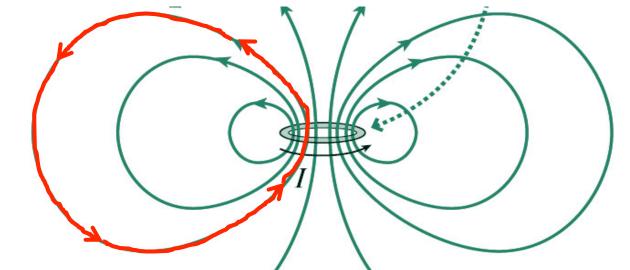
$$\oint \vec{B} \cdot d\vec{r} = \mu_0 I_{\text{enclosed}}$$

- *I*_{enclosed} is the current going through the closed 'Amperian' loop
- This really only applies for steady (constant) currents
 - Changing currents create a complicated mix of B and E fields
- Remember the **vector dot product** is a scaler:
 - really just taking a "component in the direction of" the other vector



Applying Ampere's Law in General Cases

- Ampere's law is always true but it's usually hard to apply
- Example: Magnetic field from a current loop (but generally true)
 - Draw our Amperian loop along a closed magnetic field line
 - Then \vec{B} and $d\vec{r}$ are parallel everywhere on the closed path
 - \vec{B} also has constant magnitude everywhere on the closed path

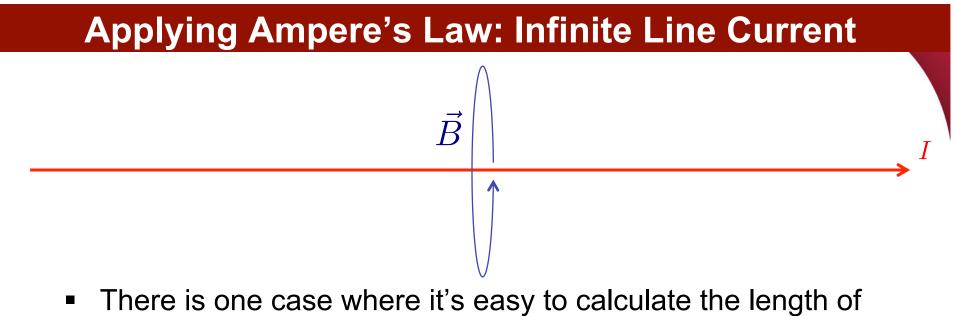


• So if the field line has length $L_{\rm field \ line}$, Ampere's Law gives

$$\oint \vec{B} \cdot d\vec{r} = BL_{\text{field line}} = \mu_0 I \quad \Rightarrow \quad \left| B = \frac{\mu_0 I}{L_{\text{field line}}} \right|$$

efferson Lab

But the length of that field line is usually quite hard to calculate!
Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 7



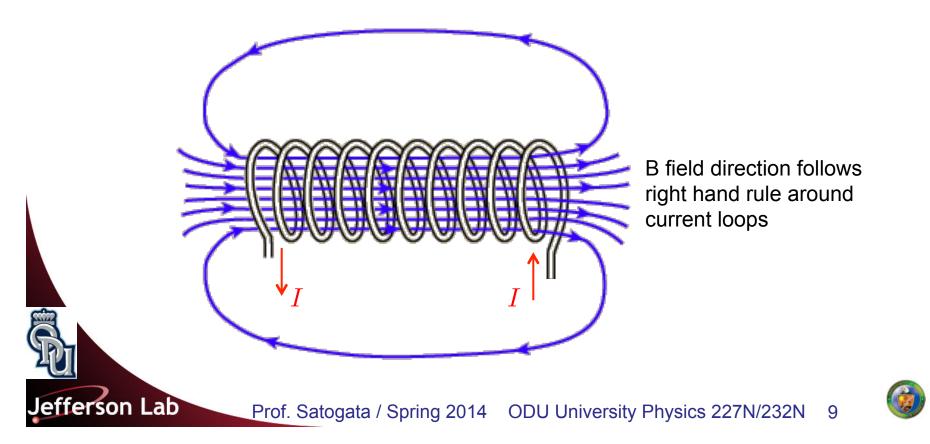
- the field lines: the line of infinite current
 - Field lines go in (right-hand) circles around the current
 - Rotational symmetry: B is same everywhere on the circle
 - Then Ampere's Law gives

Jefferson Lab

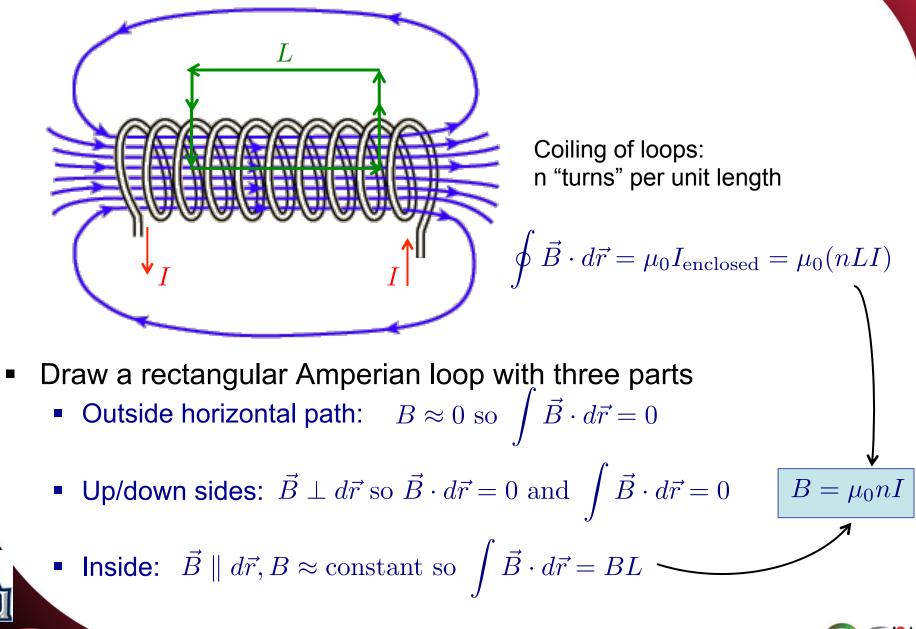
$$\oint \vec{B} \cdot d\vec{r} = BL_{\text{field line}} = \mu_0 I_{\text{enclosed}}$$
$$L_{\text{field line}} = 2\pi r$$
$$B = \frac{\mu_0 I_{\text{enclosed}}}{2\pi r}$$

Ampere's Law: Solenoid

- Instead of a current loop, we can make many circular loops of wire with the same radius and evenly spaced
 - This is called a **solenoid**
 - A very long solenoid has a nearly constant magnetic field in the center of the loops
 - Outside of the loops the path is long and the field is quite small



Ampere's Law: Solenoid



Jefferson Lab

🕝 📢