

Jefferson Lab

University Physics 227N/232N

Ch 27: Inductors, towards Ch 28: AC Circuits

Quiz and Homework Due This Week Exam Next Wednesday! (April 9)

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org

http://www.toddsatogata.net/2014-ODU

Wednesday, April 2 2014

Happy Birthday to Michael Fassbender, Marvin Gaye, Carl Kasell, Sir Alec Guinness, Hans Christian Andersen, and Casanova!

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N

Some Comments About Units

- Units in the electricity/magnetism section may seem confusing
 - That's because they are!

Jefferson Lab

- We're relating more concepts than motion and kinematics that you learned in the first semester.
- We use metric mks or SI units in this class: if you use these units in your calculations, they should "just work"
- I'll also include some units and conversions on the cheat sheet

Quantity	Unit
Electric charge	Coulomb [C]
Magnetic field	Tesla [T] (10 ⁻⁴ T = 1 Gauss)
Electric potential	Volt [V]
Electric current	Ampere or Amp [A] = 1 C/s
Magnetic Flux	Weber [Wb] = T m^2 = V s
Inductance (to be covered today)	Henry [H]

Conversions are easiest to figure out through physical formulas

 $\vec{F} = q\vec{v} \times \vec{B} \quad \Rightarrow \quad 1 \operatorname{N} = (1 \operatorname{kg m/s^2}) = (1 \operatorname{C})(1 \operatorname{m/s})(1 \operatorname{T}) \quad \Rightarrow 1 \operatorname{T} = 1 \operatorname{kg/(C s)}$

Review: Faraday's Law

 Faraday's law describes induction by relating the EMF induced in a circuit to the rate of change of magnetic flux through the circuit:

$$\mathcal{E} = -\frac{d\Phi_B}{dt} \qquad \left(\mathbf{V} = \frac{\mathbf{T}\,\mathbf{m}^2}{\mathbf{s}}\right)$$

where the magnetic flux is given by

$$\Phi_{\rm B} = \int \vec{B} \cdot d\vec{A}$$
 Weber, Wb $\equiv {\rm T} {\rm m}^2$

 With a flat area and uniform field, this becomes

$$\Phi_B = B A \, \cos\theta$$

 The flux can change by changing the field *B*, the area *A*, or the orientation *θ*.

lefferson Lab

Moving a magnet near a wire loop increases the flux through the loop. The result is an induced EMF given by Faraday's law. The induced EMF drives an induced current in the loop.

- A wire loop of radius r = 10 cm is in the plane of the screen, perpendicular to a magnetic field *B* = 1.1 T pointing into the screen.
 - What is the flux through the loop?

$$\Phi_B = \int \vec{B} \cdot d\vec{A} = BA\cos\theta = BA$$

efferson Lab

 $\Phi_B = (1.1 \text{ T})(\pi (0.1 \text{ m})^2) = 0.034 \text{ Wb} = \Phi_B$

(definition of flux)

 If the magnetic field smoothly changes to a zero value over 0.1 s, what is the induced EMF in the loop?

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -\frac{(0.034 \text{ Wb})}{0.1 \text{ s}} = \boxed{-0.34 \text{ V} = \mathcal{E}} \qquad \text{(Faraday's Law)}$$

- Which direction does the induced current flow in the loop?
 - Creates a flux that opposes the flux change: clockwise current

A closed circuit is created by a conductor of length /=20 cm sliding along a track to the right with velocity v = 5.9 m/s, through a magnetic field B = 0.85 T pointing into the screen.

Jefferson Lab

What is the change in flux though the closed loop per unit time?

$$\Phi_B = BA \quad \Rightarrow \quad \frac{d\Phi_B}{dt} = B\frac{dA}{dt} = Bl\frac{dw}{dt} = Blv = \frac{d\Phi_B}{dt}$$
$$\frac{d\Phi_B}{dt} = (0.85 \text{ T})(0.2 \text{ m})(5.9 \text{ m/s}) = 1.0 \text{ V}$$

• If the resistor has resistance $R = 10 \Omega$, what is the magnitude and direction of the induced current?

$$V = \mathcal{E} = IR \quad \Rightarrow \quad I = \frac{\mathcal{E}}{R} = \frac{1.0 \text{ V}}{10 \Omega} = \boxed{0.1 \text{ A} = I}$$
 (Ohm's Law)

Creates a flux that opposes flux change: counterclockwise current

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 5

- A wire loop of radius r = 10 cm is in the plane of the screen, perpendicular to a magnetic field *B* = 1.1 T pointing into the screen.
 - What is the flux through the loop?

$$\Phi_B = \int \vec{B} \cdot d\vec{A} = BA\cos\theta = BA$$

lefferson Lab

$$\Phi_B = (1.1 \text{ T})(\pi (0.1 \text{ m})^2) = 0.034 \text{ Wb} = \Phi_B$$

If the loop rotates around the dotted axis with frequency f = 1Hz, what is the induced EMF in the loop?

- A wire loop of radius r = 10 cm is in the plane of the screen, perpendicular to a magnetic field B = 1.1 T pointing into the screen.
 - What is the flux through the loop?

$$\Phi_B = \int \vec{B} \cdot d\vec{A} = BA\cos\theta = BA$$

efferson Lab

 $\Phi_B = (1.1 \text{ T})(\pi (0.1 \text{ m})^2) = 0.034 \text{ Wb} = \Phi_B$

If the loop rotates around the dotted axis with frequency *f* = 1Hz, what is the induced EMF in the loop?

$$\Phi_B = BA\cos\theta = BA\cos(2\pi ft)$$

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = BA(2\pi f)\sin(2\pi ft) = (1.1 \text{ T})(\pi(0.1 \text{ m})^2)(2\pi(1 \text{ Hz}))\sin(2\pi ft)$$
$$\mathcal{E} = (0.22 \text{ V})\sin(2\pi ft)$$
An AC (alternating current) generator

7

Induced Electric Fields

- The induced emf in a circuit subject to changing magnetic flux actually results from an induced electric field.
 - Induced electric fields result from changing magnetic flux.
 - This is described by the **full form of Faraday's law**, one of the four fundamental laws of electromagnetism:

$$\oint \vec{E} \cdot d\vec{r} = -\frac{d\Phi_{\rm B}}{dt}$$

where the integral is taken around any closed loop, and where the flux is through any area bounded by the loop.

- The equation states that a changing magnetic field produces an electric field.
 - Thus not only charges but also changing magnetic fields are sources of electric field.
 - Unlike the electric field of a static charge distribution, the induced electric field is *not conservative*.

efferson Lab

Static and Induced Electric Fields

- Static electric fields begin and end on charges.
- Induced electric fields generally form closed loops.
 - Similar to magnetic fields created by currents.

Review: Inductance

- Mutual inductance occurs when a changing current in one circuit results, via changing magnetic flux, in an induced emf and thus a current in an adjacent circuit.
 - Mutual inductance occurs because some of the magnetic field produced by one circuit passes through the other circuit's area, producing a changing flux – two current loops affect each other.
- **Self-inductance** occurs when a changing current in a circuit results in an induced emf that opposes the change in the circuit itself.
 - Self-inductance occurs because some of the magnetic flux produced in a circuit passes through that same circuit.

- Current is charge moving around due to an applied electric field
 - (definition of current and force on charges from electric fields)
- Current (moving electric charges) is a source of magnetic fields and magnetic flux
 - Biot-Savart and Ampere's Laws
- Changing magnetic flux is a source of electric field/EMF
 - Faraday's Law

efferson Lab

- Changing electric fields is a source of more magnetic field
 - Lenz's law: This magnetic field "fights" the original changing flux

Mutual Inductance: Transformers

- An electrical transformer transmits electrical energy through mutual inductance
 - A purely AC device

Jefferson Lab

- Requires AC current to produce changing magnetic flux and induced current
- AC frequency is same on both sides
- Primary and secondary solenoid windings, usually around same core
- Note opposite directions of windings!
- Used to "step up" or "step down" AC voltage
 - Also used for AC circuit isolation

Flux is approximately the same on both sides

$$V_{\rm P} = -N_{\rm P} \frac{d\Phi_B}{dt} \qquad V_{\rm S} = -N_{\rm P} \frac{d\Phi_B}{dt}$$

Transformer : $\frac{V_P}{N_P} = \frac{V_S}{N_S}$

Example: Transformer

- You are traveling to Europe and want to use your 120V device with a European 240V outlet. Neglecting for a moment the frequency difference (50 Hz European vs 60 Hz US AC frequency), you want to construct a homemade transformer to use temporarily.
 - If you wrap N_P=50 turns of wire on the European side of your transformer, how many turns N_S should you wrap on the American side?
 - 25 Transformer : $\frac{V_P}{N_P} = \frac{V_S}{N_S}$ • 50
 - 75 • 100

efferson Lab

Example: Transformer

- You are traveling to Europe and want to use your 120V device with a European 240V outlet. Neglecting for a moment the frequency difference (50 Hz European vs 60 Hz US AC frequency), you want to construct a homemade transformer to use temporarily.
 - If you wrap N_P=50 turns of wire on the European side of your transformer, how many turns N_S should you wrap on the American side?
 - 25 • 50 Transformer : $\frac{V_P}{N_P} = \frac{V_S}{N_S}$
 - 100

• 75

efferson Lab

$$N_S = \left(\frac{V_S}{V_P}\right) N_P = \left(\frac{120 \text{ V}}{240 \text{ V}}\right) (50 \text{ turns}) = \boxed{25 \text{ turns} = N_S}$$

Don't try this at home!

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 14

Transformers are crucial to electric power distribution

Jefferson Lab

- High-voltage AC wires lose less power over long distribution distances
- Lower voltage is needed for use and electrical safety in homes
- A transformer/diode combination can be used to produce DC voltage: a rectifier

Self-inductance

The self-inductance L of a circuit is defined as the ratio of the magnetic flux through the circuit to the current in the circuit:

$$L \equiv \Phi_{\rm B}/I$$

In differential form:

lefferson Lab

$$\frac{d\Phi_{\rm B}}{dt} = L\frac{dI}{dt}$$

- The SI units of L are **Henry** or $T-m^2/A$
- By Faraday's law, the EMF or voltage across an inductor is

$$\mathcal{E}_{\rm L} = -L \frac{dI}{dt}$$

The minus sign shows that the direction of the inductor EMF is such as to oppose the change in the inductor current.

Voltage increasing

in direction of current defines

positive \mathcal{E}_{L} . . .

Current direction

Self-Inductance of a Solenoid

- Consider a long solenoid of cross-sectional area A, length I, with n turns per unit length.
 - The magnetic field inside the solenoid is

 $B = \mu_0 n I$

 With *n* turns per unit length, the solenoid contains a total of *nl* turns, so the flux through all the turns is

$$\Phi_{\rm B} = nlBA = nl(\mu_0 nI)A = \mu_0 n^2 IAl$$

- The self-inductance of the solenoid is

efferson Lab

$$L = \frac{\Phi_{\rm B}}{I} = \mu_0 n^2 A l$$

Note that this only depends on the construction/geometric details of the solenoid – similar to capacitance for a capacitor.

(Magnetic Energy)

- As current builds up in an inductor, the inductor absorbs energy from the circuit. That energy is stored in the inductor's magnetic field.
 - The rate at which the inductor stores energy is

$$P = LI \frac{dI}{dt}$$

For an inductor, the stored energy is

Jefferson Lab

$$U_{\rm B} = \int P dt = \int_0^I (LI) dI = \frac{1}{2} LI^2$$

 Considering the uniform magnetic field inside a solenoid shows that the magnetic energy density is

$$u_{\rm B} = \frac{B^2}{2\mu_0}$$

This is a universal expression: wherever there's a magnetic field, there is energy with density $B^2/2\mu_0$.

Connecting Magnetism and Circuits

- The equation $\mathcal{E}_{L} = -L \frac{dI}{dt}$ shows that the current through an inductor can't change instantaneously.
 - Otherwise an impossible infinite emf would develop.
 - Rapid changes in current result in large, possibly dangerous emfs.
 - So buildup of current in an *RL* circuit occurs gradually.

The Inductive Time Constant

- The loop rule for *RL* circuit gives $\mathcal{E}_0 IR + \mathcal{E}_L = 0$
- With $dI/dt = -\mathcal{E}_L/L$ we can solve for current to find

$$I(t) = \frac{\mathcal{E}_0}{R} \left(1 - e^{-Rt/L} \right)$$

- The inductor current starts at zero and builds up with time constant L/R.
 - As the current increases, its rate of change decreases.
 - The inductor emf therefore decays exponentially to zero.
 - This decay has the same time constant L/R.

Short- and Long-Term Behavior of Inductors

- Since current can't change instantaneously, an inductor in an *RL* circuit with no current through it acts instantaneously like an open circuit.
 Switch open: Switch closed:
 - If there's current flowing, it keeps flowing momentarily despite changes in the circuit.
- After a long time, the inductor current stops changing.
 - Therefore, the inductor emf is zero.
 - So the inductor acts like an లే ordinary wire.

efferson Lab

(L)

After a long time: Inductor acts like short circuit.

(c)

Reopen switch: Inductor current keeps flowing.

21

© 2012 Pearson Education, Inc.

AC Circuits

- We've seen two types of time-dependent electrical circuits and one time of time-independent electrical circuit
 - For resistor circuits, V=IR and voltage and current weren't changing over time
 - For capacitor and inductor circuits, we saw exponential decay behavior in current and voltage with time constants (in the lab and previous slides)
- It's even more useful to look at what happens when we change voltage and/or current in a circuit in a periodic way
 - The basic building blocks of periodic motion: trig functions
 - So we'll have to review some concepts from circular and simple harmonic motion from last semester
 Start with
 - Start with

efferson Lab

$$V(t) = V_{\text{peak}} \sin(2\pi f t)$$

Describing Alternating Current and Voltage

- Sinusoidally varying AC current and voltage are characterized by frequency, amplitude, and phase.
 - In most everyday situations frequency f is given in hertz (Hz), or cycles per second.
 - It's often more convenient to use angular frequency: $\omega = 2\pi f$.
 - The alternating voltage and current Her can be written as

$$V = V_{\rm p} \sin(\omega t + \phi_V), I = I_{\rm p} \sin(\omega t + \phi_I)$$

- Amplitude can be given as the peak value, or as the root-mean-square (rms) value.
 - For a sinusoidally varying quantity, the rms value is the peak value divided by $\sqrt{2}$:

ferson Lab

 $V_{\rm rms} = \frac{V_{\rm p}}{\sqrt{2}}, \quad I_{\rm rms} = \frac{I_{\rm p}}{\sqrt{2}}$ Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 23