University Physics, PHYS 227/232 Final Exam Mon May 5, 2014

Useful Equations/Concepts: Electrostatics

Electric (Coulomb) force \vec{F} between two point charges: $\vec{F} = \left(\frac{kq_1q_2}{r^2}\right)\hat{r}$ Electric field \vec{E} of a point charge or charged sphere: $\vec{E} = \left(\frac{kq}{r^2}\right)\hat{r}$ Electric potential V of a point charge or charged sphere (relative to V=0 at $r = \infty$): $V = \frac{kq}{r}$ Electric potential energy U of a point charge at electric potential V: U = qVFlux Φ and Gauss's Law: $\Phi = \int \vec{E} \cdot d\vec{A} = \int E dA \cos \theta$ $\Phi_{closed surface} = 4\pi kq_{enclosed}$

Useful Equations/Concepts: Electronics

Useful Equations/Concepts: Magnetism

Bar magnetic field lines go from North to South (outside magnet) Force on charged particle from magnetic field: $\vec{F} = q\vec{v} \times \vec{B}$ Force on current from magnetic field: $\vec{F} = I\vec{l} \times \vec{B}$ Cyclotron frequency: $f = \frac{qB}{2\pi m}$ Cyclotron radius: $r = \frac{mv}{qB}$ Biot-Savart Law: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^2}$ Ampere's Law: $\int \vec{B} \cdot d\vec{r} = \mu_0 I_{\text{enclosed}}$ Magnetic field of infinite line current: $B = \frac{\mu_0 I}{2\pi r}$ in right hand circles around current Magnetic field at x along centerline of loop of radius a: $B = \frac{\mu_0 I a^2}{2x^3}$ Magnetic field of a solenoid with *n* turns/unit length: $B = \mu_0 n I$ Faraday's Law: $\mathcal{E} = V = -\frac{d\Phi_{\rm B}}{dt}$ Magnetic flux: $\Phi_{\rm B} \equiv \int \vec{B} \cdot d\vec{A} = BA \cos \theta$ Figuring out induced current direction: (1) $I \rightarrow B$ (2) $B \rightarrow \Phi$ (3) $\Delta \Phi$? (4) Fight the change! (5) Induced I direction needed? Self-Inductance: $L \equiv \frac{\Phi_{\rm B}}{I}$ Voltage/EMF across Inductor: $\mathcal{E}_{\rm L} = -L \frac{dI}{dt}$ Self-Inductance of solenoid of length l, cross-section area A: $L = \mu_0 n^2 A l$ Useful Equations/Concepts: Optics Reflection: $\theta_{\text{incident}} = \theta_{\text{reflected}}$ (measured relative to *normal* to surface) Index of refraction: $n \equiv \frac{c}{v}$ (where $c = 3.0 \times 10^8$ m/s is the speed of light in a vacuum) Snell's Law for refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$ Mirror/Lens equation: $1/s_{\text{object}} + 1/s_{\text{image}} = 1/f$ (where f is focal length) Mirror/Lens magnification: $M \equiv h_{\rm image}/h_{\rm object} = -s_{\rm image}/s_{\rm object}$ For a mirror with a circular arc: $s_{\text{center}} = 2f$ Lensmaker's equation: $\frac{1}{f} = \left(\frac{n_{\text{lens}}}{n_{\text{medium}}} - 1\right) \left[\frac{1}{R_1} - \frac{1}{R_2}\right]$ $x_{\text{bright}} \approx \frac{m\lambda L}{d}$ $x_{\text{dark}} \approx \frac{\left(m + \frac{1}{2}\right)\lambda L}{d}$ Double-slit interference, bright fringes: $d\sin\theta_{\text{bright}} = m\lambda$ Double-slit interference, dark fringes: $d\sin\theta_{\text{dark}} = (m + \frac{1}{2})\lambda$

University Physics, PHYS 227/232	Final Exam	Mon May 5, 2014
Useful Geometry Equations		
Circle circumference: $2\pi r$		Circle area: πr^2
Sphere surface area: $4\pi r^2$		Sphere volume: $\frac{4}{3}\pi r^3$
Cylinder surface area: $2\pi r^2$ (ends) $+ 2\pi rL$ (side)		Cylinder volume: $\pi r^2 L$
Useful Constants and Units		
Acceleration of gravity: $g = 9.8 \text{ m/s}^2$		
Speed of light: $c = 2.998 \times 10^8 \text{ m/s}$		
$k = 9.00 \times 10^9 \text{ N m}^2/\text{C}^2$		
$\epsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{N} \mathrm{m}^2$		
Electron charge: $e = -1.6 \times 10^{-19} \mathrm{C}$	Electron mas	s: $m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
Proton charge: $+1.6 \times 10^{-19} \text{ C}$	Proton mass	s: $m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
$\mu_0 = 4\pi \times 10^{-7} \text{ T-m/A}$		
Voltage/Electric Potential: Volt [V]		
Electric Current: Ampere $[A, 1 A = 1 C/s]$		
Magnetic Field: Tesla $[T, 1 T = 10^4 \text{ Gauss}]$		
Inductance: Henry [H]		
Magnetic Flux: Weber [Wb, 1 Wb = 1 T $m^2 = 1$	V s]	

]	Prefix	Symbol	Multiplier			
	centi	с	10^{-2}			
	milli	m	10^{-3}			
	micro	μ	10^{-6}		Material	Index of Refraction
	nano	n	10^{-9}	-	air	1.000
	pico	р	10^{-12}		water	1.333
	kilo	k	10^{3}		glass	1.500
	mega	М	10^{6}	-		
	giga	G	10^{9}			

 10^{12}

Т

tera