Jefferson Lab GSPDA Summer Lecture Series

Introduction to Accelerators (and Applied Relativity and E&M)

Todd Satogata Jefferson Lab and Old Dominion University <u>satogata@jlab.org</u>

T. Satogata / June 9 2015

Jefferson Lab

Summer Lecture Series

Summer Lecture Series 2015

11:00AM			
	Rolf Ent	Introduction to Nuclear Physics 🗗	AUD
11:00AM	Todd Satogata	Introduction to Accelerators	AUD
11:00AM	Howard Fenker	Introduction to Detectors for Nuclear Physics	AUD
11:00AM	Mike Spata	Overview of CEBAF Accelerator	AUD
11:00AM	Drew Weisenberger	Guesstimation: Approximate answers to any question	AUD
11:00AM	Eugene Chudakov	Calorimetry	F113
11:00AM	Larry Weinstein	Guesstimation: Approximate answers to any question	F113
11:00AM	Grigory Eremeev	SRF Science and Technology	F113
11:00AM	Gail Dodge	Ethics in Research	F113
11:00AM	Elton Smith	Scintillator and Photomultipliers	F113
11:00AM	Joe Grames	Polarized Electron Source	F113
11:00AM	Mark Ito	Kinematic Fitting	F113
11:00AM	Graham Heyes	Data Acquisition Systems	AUD
11:00AM	Cynthia Keppel	Medical Applications of Nuclear Physics	AUD
11:00AM	Mac Mestayer	Discovery of the Quark	F113
11:00AM	Doug Higinbotham	Nuclear Physics Experiment, an example	AUD
11:00AM	Marcy Stutzman	Extreme High Vacuum	AUD
	11:00AM 11:00AM 11:00AM 11:00AM 11:00AM 11:00AM 11:00AM 11:00AM 11:00AM 11:00AM 11:00AM 11:00AM	11:00AMHoward Fenker11:00AMMike Spata11:00AMDrew Weisenberger11:00AMEugene Chudakov11:00AMLarry Weinstein11:00AMGrigory Eremeev11:00AMGail Dodge11:00AMElton Smith11:00AMJoe Grames11:00AMMark Ito11:00AMGraham Heyes11:00AMCynthia Keppel11:00AMDoug Higinbotham11:00AMMarcy Stutzman	11:00AMHoward FenkerIntroduction to Detectors for Nuclear Physics11:00AMMike SpataOverview of CEBAF Accelerator11:00AMDrew WeisenbergerGuesstimation: Approximate answers to any question11:00AMEugene ChudakovCalorimetry11:00AMLarry WeinsteinGuesstimation: Approximate answers to any question11:00AMGrigory EremeevSRF Science and Technology11:00AMGail DodgeEthics in Research11:00AMElton SmithScintillator and Photomultipliers11:00AMJoe GramesPolarized Electron Source11:00AMGraham HeyesData Acquisition Systems11:00AMMac MestayerDiscovery of the Quark11:00AMDoug HiginbothamNuclear Physics Experiment, an example11:00AMMarcy StutzmanExtreme High Vacuum

History: Jean-Antoine Nollet

In 1746 he gathered about **two hundred monks** into a circle over a mile in circumference, with pieces of iron wire connecting them. He then discharged a battery of Leyden jars through the human chain and observed that **each man reacted at substantially the same time to the electric shock**, showing that the speed of electricity's propagation was very high.

T. Satogata / June 9 2015

Jefferson Lab

The Monkotron

Nollet had

Jefferson Lab

- Iots of charged particles
- moving in a confined 2km ring (!)
- at very high velocities
- accelerated by high voltage
- Nollet didn't have
 - controlled magnets
 - controlled acceleration
 - proper instrumentation
 - many friends after this experiment

http://www.yproductions.com/writing/archives/twitch_token_of_such_things.html

T. Satogata / June 9 2015

Simplified Particle Motion

- Design trajectory and perturbation theory
 - Particle motion is perturbatively expanded around a design trajectory or orbit
 - This orbit can be over 10¹⁰ km in a storage ring
- Separation of fields: Lorentz force $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$
 - Magnetic fields from static or slowly-changing magnets
 - (usually) transverse to design trajectory
 - Electric fields from high-frequency resonators (RF cavities)
 - (usually) in direction of design trajectory
- (very) Relativistic charged particle velocities

5

Jefferson Lab

Applied Special Relativity

- Accelerators: applied special relativity
 - Subatomic particles traveling near light speed
 - Kinetic energy >> rest mass energy
- Relativistic parameters:

Jefferson Lab

$$\beta \equiv \frac{v}{c}$$
 $\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$ $\beta = \sqrt{1-1/\gamma^2}$

- Total energy U, momentum p, and kinetic energy W

$$U = \gamma mc^2$$
 $p = (\beta \gamma)mc = \beta \left(\frac{U}{c}\right)$ $W = (\gamma - 1)mc^2$

Relative Relativity

approximate kinetic energy of a flying mosquito ($\approx 1.6 \times 10^{-7}$ J)

 \approx 2.2 $\times\,mass-energy$ equivalent of a Z boson $(\approx 1.5 \times 10^{-8}\,\text{J})$

"Convenient" Units

 $1 \text{ eV} = (1.602 \times 10^{-19} \text{ C})(1 \text{ V}) = 1.602 \times 10^{-19} \text{ J}$ $1 \text{ MeV} = 1.602 \times 10^{-13} \text{ J}$ $1 \text{ GeV} = 1.602 \times 10^{-10} \text{ J}$

- How much is a TeV?
 - Energy to raise 1g about 16 um against gravity
 - Energy to power 100W light bulb 1.6 ns
- But many accelerators have 10¹⁰⁻¹² particles
 - Single bunch "instantaneous power" of tens of **Tera**watts (125 g hamster at 100 km/hr)
- Highest energy observed cosmic ray
 - ~300 EeV (3x10²⁰ eV or 3x10⁸ TeV!) OMG particle

Jefferson Lab

Applied Special Relativity

- Accelerators: applied special relativity
 - Subatomic particles traveling near light speed
 - Kinetic energy >> rest mass energy
- Relativistic parameters:

Jefferson Lab

$$\beta \equiv \frac{v}{c} \qquad \gamma \equiv \frac{1}{\sqrt{1-\beta^2}} \qquad \beta = \sqrt{1-1/\gamma^2}$$

- γ=1 (classical mechanics) to ~2.05x10⁵ (to date) (at LEP) v=0.9999999997 c
- Total energy U, momentum p, and kinetic energy W

$$U = \gamma mc^2 \qquad p = (\beta \gamma)mc = \beta \left(\frac{U}{c}\right) \qquad W = (\gamma - 1) mc^2$$

Convenient Relativity Relations

In "ultra" relativistic limit β≈1

Jefferson Lab

- Usually must be careful below *γ*≈5 or U≈5 mc²
- Many accelerator physics phenomena scale with γ^k or $(\beta\gamma)^k$
- Electrons are light: they are ultrarelativistic above a few MeV

Applied Electricity and Magnetism

Accelerators: applied E&M

Jefferson Lab

- Charged subatomic particles affected by controlled electric and magnetic fields
- Lorentz force: forces from fields on a charged particle

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(\gamma m \vec{v})}{dt} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

True even for relativistically-moving particles

\vec{E} : Electric field

- $\vec{B}:$ Magnetic (Induction) field
- Only electric fields can change particle speed!
 - Magnetic fields only change particle direction

Electric and Magnetic Fields

- Electric fields
 - Created by distributions of electric charge
 - Measured in Volts/m and proportional to charge
 - ε_0 : "permittivity of free space", 8.854x10⁻¹² C²/(J-m)
- Magnetic fields
 - Created by moving charges, currents
 - (magnetic dipole moments)
 - Measured in Tesla = 10⁴ Gauss = N/(A-m)
 - μ_0 : "permeability of free space", $4\pi \times 10^{-7} \text{ N-s}^2/\text{C}^2$
- Since Joule=N-m, $1/(\varepsilon_0\mu_0)$ has units of m²/s²
 - In fact,

Jefferson Lab

$$1/(\varepsilon_0\mu_0) = c^2$$

Electric and Magnetic Fields

- Electric fields
 - Created by distributions of electric charge
 - Measured in Volts/m and proportional to charge
 - ε_0 : "permittivity of free space", 8.854x10⁻¹² C²/(J-m)
- Magnetic fields
 - Created by moving charges, currents
 - (magnetic dipole moments)
 - Measured in Tesla = 10⁴ Gauss = N/(A-m)
 - μ_0 : "permeability of free space", 4p x 10⁻⁷ N-s²/C²
 - (Also a band...)

Jefferson Lab

T. Satogata / June 9 2015

GSPDA Summer Lecture

Maxwell's Equations

- (Vector) EM fields must obey Maxwell's eqns
 - First order linear differential equations

 $\vec{\nabla} \cdot \vec{E} = rac{
ho}{arepsilon_0}$ Electric field is generated by electric charges $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ Changing magnetic fields generate electric fields (Faraday's Law) $\vec{\nabla} \cdot \vec{B} = 0$ No magnetic charges (monopoles) and magnetic field lines must close $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ Magnetic fields are generated by moving electric charges (currents) and changing electric fields Jefferson Lab T. Satogata / June 9 2015 **GSPDA Summer Lecture** 14

Accelerator Magnet Examples 0.1-15 Tesla!

T. Satogata / June 9 2015

Air-temperature steel magnets (Danfysik)

Superconducting NbTi magnets (LHC)

Normal vs Superconducting Magnets

Jefferson Lab

LEP quadrupole magnet (NC) LHC dipole magnets (SC)

 Note high field strengths (red) where flux lines are densely packed together

16

T. Satogata / June 9 2015

Picturing Drift and Quadrupole Motion

RF Cavity Examples Tens of Millions of V/m!

T. Satogata / June 9 2015

GSPDA Summer Lecture

Did Somebody Say CEBAF?

Recirculating Arcs magnets RF and magnets North Linac 20 Cryomodules Injector South Linac 20 Cryomodules RF and magnets Experimental Halls 6-12 GeV (~1 MW) polarized electrons 1497 MHz beams Circumference ~1300m (0.8 miles) CW recirculating linacs Jefferson Lab T. Satogata / June 9 2015 **GSP**

The CEBAF Tunnel

Jefferson Lab

- Superconducting RF operates at 2K
- High vacuum systems
- Instrumentation/diagnostic systems
- High-power electrical systems
- Control system: 10k+ control points

20

T. Satogata / June 9 2015

Why CEBAF?

- Let's say we want to do a diffraction/scattering experiment to get images of atomic nuclei (protons and neutrons)
 - Proton charge radius: ~0.88 x 10⁻¹⁵ m (0.88 fm)
- We also want to measure electroweak interactions
 - So our probe better be EM charged and polarizable (to see asymmetric scattering from weak force parity violation)
- High-energy electrons fit the bill perfectly

$$\lambda_{\rm e} = 10^{-15} \,\mathrm{m} \quad \Rightarrow \quad E_{\rm e} = \frac{hc}{\lambda_{\rm e}} = 1.24 \,\mathrm{GeV}$$

- Higher energies can also excite new nuclear/parton states
- Polarized beam asymmetries are sensitive to weak interaction currents

T. Satogata / June 9 2015

Jefferson Lab

GSPDA Summer Lecture

How CEBAF?

- A multi-GeV continuous electron beam is not common!
 - Equivalent to accelerating through GV of potential
 - Far far too large to create with electrostatics
- Regular (non-superconducting) RF cavities?
 - CW state of the art was ~2 MV/m: 2 GeV = 1 km of cavities
 - We want high frequency (100s of MHz): high Ohmic losses
 - This implies many 10s of MW of wall plug power!
- Superconducting RF cavities!

Jefferson Lab

- Requires construction of large 2K (or 4K) cryogenic facility
- But can achieve high energy, "high current" CW beams
- Original gradients: ~5 MV/m = $E_e \sim 4 \text{ GeV}$
- The first major superconducting RF facility in the world

CEBAF Reminder

23

T. Satogata / June 9 2015

Jefferson Lab

How CEBAF?

CEBAF original RF cavities had 5 cavities per "cell"

Jefferson Lab

- RF cavities act like coupled 3D EM harmonic oscillators
 - Higher order modes ("HOMs") can also interact with the beam
 - Q: 1/e resistive damping time in cycles. Here Q=10⁹ to 10¹⁰!!

Wave Riding in RF Cavities at CEBAF

Electromagnetic wave is traveling, pushing particles along with it

Electromagnetic Wave as seen from above (red is +, blue -)

T. Satogata / June 9 2015

Jefferson Lab

25

RF Cavities: Coupled Harmonic Oscillators

magnetic boundaries (left and right) → no 0-mode

Numerical Examples

 $\lambda f = c$ $f = c / \lambda$ $f_{CEBAF} = 1497 \text{ MHz} = 1.497 \times 10^9 \text{ sec}^{-1} \rightarrow \lambda_{CEBAF} = 20 \text{ cm}$ $I = \frac{P}{A} = \frac{E_x B_y}{\mu_0} = \frac{E_x^2}{\mu_0 c} \text{ or on average } \frac{c \mathcal{E}_0 E_{x,amp}^2}{2}$ 1. Light Bulb 10 W @ 1 m $\rightarrow E_{x,amp}$: 24.5 V/m or 12.2 V/m @ 2 m 2. Radio Station 50 kW @ 10,000 m $\rightarrow E_{x amp}$: 0.17 V/m or 0.09 V/m @ 20 km 3. CEBAF Waveguide 400 W in .1 m×.2 m $\rightarrow E_{x,amp}$: 3.9 kV/m

27

Jefferson Lab

T. Satogata / June 9 2015 GSPDA Summer Lecture

CEBAF 6 GeV 3-Hall Operations

- Beam comes in "bunches" at 1497 MHz
- TM mode cavities split into three 499 MHz beams for 3 halls

Refurbished CEBAF RF Cavities

Made out of very pure large-grain Nb

Jefferson Lab

- Superconducting RF technology research is a very active area
 - Includes many active control loops for consistent fields
- Nb RF technology theoretical limit: 55 MV/m
- Insulating cryomodule layers removed here for visibility

29

T. Satogata / June 9 2015

CEBAF: From 6 GeV to 12 GeV

Jefferson Lab T. Satogata / June 9 2015

GSPDA Summer Lecture

C100 RF

- New RF cryomodules: 4x gradient of old modules
 - Adding 5 new modules doubles energy of accelerator
 - Each module: 20 MV/m, ~100 MeV energy gain/module

GSPDA Summer Lecture

A Humorous Interlude Before History Lessons

Savage Chickens

Jefferson Lab

Τ. ξ

by Doug Savage

SPOT THE 8 DIFFERENCES BETWEEN THESE TWO PICTURES

ture

