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Overview 

  Coordinate and reference systems 

  Equations of motion in an azimuthally symmetric field 

  Elucidation of approximations 

  Transverse separability 

  Solutions of equations of motion 

  2nd order linear ODEs as matrix equations 

  Momentum offsets and dispersion 

  Weak focusing synchrotron 

  Momentum compaction 

  Connections to orbital mechanics 
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Parameterizing Particle Motion: Coordinates 

  Now we derive more general equations of motion 

  We need a local coordinate system 

    relative to the design particle trajectory 

s is the direction of design particle motion 

y is the main magnetic field direction 

x is the radial direction 

    is not a coordinate, but the design 

  bending radius in magnetic field 

  Can express total radius R as 

  Also define local trajectory angle 

 

(x̂, ŷ, ẑ ≡ ŝ)

ρ

q

R = ρ+ x

!B0 = B0ŷ

θ =

s

R
=

βct

R

B0

R = ρ+ x

x0
≡

dx

ds
=

1

R

dx

dθ
≈

px

p0
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Example: MAD/madx Coordinate System 
http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.10 

Right-handed 

x̂

ŷ

ẑ

θ
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Example: MAD/madx Coordinate System 
http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.10 

Right-handed 

~r

~r = (⇢+ x)x̂+ yŷ + zẑ

x̂

ŷ

ẑ

R = ρ+ x
R

ρ
=

✓

1 +
x

ρ

◆

θ
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Example: FNAL Coordinate Systems 
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Example: CERN Coordinate Systems 
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Parameterizing Particle Motion: Approximations 

  We will make a few reasonable approximations: 

0) No local currents (beam travels in a near-vacuum) 

1) Paraxial approximation: 

2) Perturbative coordinates: 

3) Transverse uncoupled linear magnetic field:  

•  Note this obeys Maxwell’s equations in free space 

4) Negligible E field: 

•  Equivalent to assuming adiabatically changing B fields 

relative to  

x, y ⌧ ρ

⇥B = B0ŷ + (xŷ + yx̂)

✓

∂By

∂x

◆

γ ≈ constant

dx/dt, dy/dt

(A0) 

(A0) 

(A1) 

(A2) 

(A3) 

(A4) 

x
0
, y

0
⌧ 1 or px, py ⌧ p0
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Parameterizing Particle Motion: Acceleration 

  Lorentz force equation of motion is 

  Calculate velocity and acceleration 

     in our coordinate system 

 

 

 

 

so 

 

q⇥v × ⇥B =
d(γm⇥v)

dt
= γm⇥̇v

⇥v = Ṙx̂+R ˙̂x+ ẏŷ = Ṙx̂+Rθ̇ŝ+ ẏŷ

⇥̇v = R̈x̂+ (2Ṙθ̇ +Rθ̈)ŝ+Rθ̇ ˙̂s+ ÿŷ

⇥̇v = (R̈−Rθ̇
2)x̂+ (2Ṙθ̇ +Rθ̈)ŝ+ ÿŷ

(A4) 

!̇v =

✓

ẍ−

v2

R

◆

x̂+
2ẋv

R
ŝ+ ÿŷ

˙̂s = −θ̇x̂ = −

v

R
x̂
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q

R = ρ+ x

  Component equations of motion 

Vertical: 

                     Horizontal:  

Parameterizing Particle Motion: Eqn of Motion 

Fy = qβcBx = γmÿ ÿ −
qβcBx

γm
= 0

t =
R

βc
θ ⇒

d

dt
=

βc

R

d

dθ

d2y

dθ2
−

qBx

βcγm
R2

= 0

d2y

dθ2
−

qBx

p
R2

= 0

Fx = −qβcBy = γm

✓

ẍ−

v2

R

◆

d2x

dθ2
+

✓

qBy

p
R− 1

◆

R = 0

d2x

dθ2
= −

qByR

p
+R
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Equations of Motion 

  Apply our paraxial and linearization approximations 

Horizontal: 

 

 

 

 

 

Vertical: 

 

(A2) (A3) (A3) 

d2x

dθ2
+

✓

qBy

p
R− 1

◆

R = 0

d2x

dθ2
+

✓

1 +
1

B0

∂By

∂x
x

◆✓

1 +
x

ρ

◆

− 1

]

ρ

✓

1 +
x

ρ

◆

= 0

(A2) 

⇒
d2x

dθ2
+ (1− n)x = 0 where n ≡ −

ρ

B0

✓

∂By

∂x

◆

d2y

dθ2
−

qBx

p
R2

= 0 ⇒
d2y

dθ2
+ ny = 0

p = qB0ρ R = ρ

✓

1 +
x

ρ

◆

By = B0 +

✓

∂By

∂x

◆

x Bx =

✓

∂By

∂x

◆

y



T. Satogata / January 2015          USPAS Accelerator Physics 12 

Things to try sometime 

  Expand the horizontal equation of motion to second 
order in x 

  Does it reduce to the stated equation at first order? 

  Use expansions for R, B that are still first order! 

  Expand the horizontal and vertical equations of 

motion to second order in x, y, δ (p. 25-6 of these slides) 

  Use expansions for R, B that are still first order! 
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Simple Equations of Motion! 

  These are simple harmonic oscillator equations 

(Not surprising since we linearized 2nd order differential 

equations) 

 

  These are known as the weak focusing equations 

If n does not depend on θ, stability is only possible in both 
planes if 0<n<1 

This is known as the weak focusing criterion 

 

d2x

dθ2
+ (1− n)x = 0

d2y

dθ2
+ ny = 0
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Visualization: Weak Focusing Forces 
electron velocity INTO page 

Radially opening magnet: n>0 Radially closing magnet: n<0 

accelerator 
center 

accelerator 
center 

Radially defocusing 

Vertically focusing Vertically defocusing 

Radially focusing 
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But Wasn’t 0<n<1 Stable? 

  This seems to indicate n>0 is horizontally unstable! 

  Horizontal motion is a combination of two forces 

Centrifugal               and centripetal Lorentz 

Both forces cancel by definition for the design trajectory   

mv2/R qvBy

Ftot =
mv2

R
− qvBy ≈

mv2

ρ

⇣ ρ

R

⌘

− qvB0

⇣ ρ

R

⌘n

= qvB0

✓

1

ζ
−

1

ζn

◆

where ζ ≡

R

ρ

ζ ≡ R/ρ

Ftot > 0 for ζ < 0

Ftot < 0 for ζ > 0

n = 0.5

Nonlinear too! But we 

linearize near ζ=1 
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Example: The Betatron 

  Weak focusing formalism was originally developed for the Betatron 

  Apply Faraday’s law with time-varying current in coils 

  Beam sees time-varying accelerating electric field too! 

  Early proofs of stability: focusing and 䇾betatron䇿 motion 

I(t)=I0 cos(2πωIt) 

Donald Kerst 

UIUC 2.5 MeV 

Betatron, 1940 

UIUC 312 MeV 

betatron, 1949 

Don’t try this at home!! Really don’t try this at home!! 
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Example: The Betatron 

Faraday0s law E = −
dφ

dt

cylindrically symmetric 
about center vertical axis 

apply sinusoidally varying 
current to toroidal conductors 

I = I0 sin(ωt)

Bave = B0 sin(ωt)

I
⌅E · d⌅r = 2πRE = −

d⇥

dt
= −πR2

B0⇤ cos(⇤t)

Magnetic flux φ ≈ πR2Bave = πR2B0 sin(ωt)

p/q = BgR ⇒ F =

dp

dt
= eR

dBg

dt

Bg =
B0

2

Force on electron F = qE = −

qR

2

dBave

dt
=

eRB0ω

2
cos(ωt)

Circular motion

Betatron Field Condition

E(t), F(t) 

I(t), B(t) 

Usable 
Part of 

Cycle 
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Example: Synchrotron Weak Focusing 

  Separate RF cavities can eliminate the need for central 
iron (and corresponding huge inductance) 

  Accelerator can be (much) larger (higher energies for same B0!) 

  But stability equation scaling with ρ is still not good:  

0 < −

ρ

B0

✓

∂By

∂x

◆

x=0

< 1
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Back to Solutions of Equations of Motion 

  Assume azimuthal symmetry (n does not depend on θ) 

  Solutions are simple harmonic oscillator solutions 

  Constants A,B are related to initial conditions 

d2x

dθ2
+ (1− n)x = 0

d2y

dθ2
+ ny = 0

x(θ) = A cos(θ
√

1− n) +B sin(θ
√

1− n)

dx

dθ
=

√

1− n[−A sin(θ
√

1− n) +B cos(θ
√

1− n)]

(x0, x
0

0
)

x0 = x(θ = 0) = A x
0

0
=

1

ρ

✓

dx

dθ

◆

(θ = 0) =

√

1− n

ρ
B

A = x0 B =
ρ

√

1− n
x
0

0
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Solutions of Equations of Motion 

  Write down solutions in terms of initial conditions 

  This can be (very) conveniently written as matrices 

(including both horizontal and vertical) 

x(θ) = cos(θ
√

1− n) x0 +
ρ

√

1− n
sin(θ

√

1− n) x0

0

x0(θ) =
1

ρ

dx

dθ
= −

√

1− n

ρ
sin(θ

√

1− n) x0 + cos(θ
√

1− n) x0

0

✓

x(θ)
x0(θ)

◆

=

 

cos(θ
√

1− n) ρp
1−n

sin(θ
√

1− n)

−

p
1−n

ρ
sin(θ

√

1− n) cos(θ
√

1− n)

!

✓

x0

x0
0

◆

✓

y(θ)
y0(θ)

◆

=

 

cos(θ
√

n) ρp
n
sin(θ

√

n)

−

p
n

ρ
sin(θ

√

n) cos(θ
√

n)

!

✓

y0
y0
0

◆
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Transport Matrices 

  MV here is an example of a transport matrix 

  Linear: derived from linear equations 

•  Can be concatenated to make further transformations 

  Depends only on 䇾length䇿 θ, radius ρ, and 䇾field䇿 n 

•  Acts to transform or transport coordinates to a new state 

•  Our accelerator 䇾lattices䇿 will be built out of these matrices 

  Unimodular: det(MV)=1 

•  More strongly, it’s symplectic: 

•  Hamiltonian dynamics, phase space conservation (Liouville) 

•  These matrices here are scaled rotations! 

✓

y(θ)
y0(θ)

◆

=

 

cos(θ
√

n) ρp
n
sin(θ

√

n)

−

p
n

ρ
sin(θ

√

n) cos(θ
√

n)

!

✓

y0
y0
0

◆

= MV (θ)

✓

y0
y0
0

◆

S = MT
V S MV where S =

✓

0 1

−1 0

◆

MV (θ1 + θ2) = MV (θ1)MV (θ2)
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Sinusoidal Solutions, Betatron Phases 

  Sinusoidal simple harmonic oscillators solutions 

  Particles move in transverse betatron oscillations 

around the design trajectory 

  We define betatron phases 

 

Write matrix equation in terms of s rather than θ 

 

✓

x(θ)
x0(θ)

◆

=

 

cos(θ
√

1− n) ρp
1−n

sin(θ
√

1− n)

−

p
1−n

ρ
sin(θ

√

1− n) cos(θ
√

1− n)

!

✓

x0

x0
0

◆

✓

y(θ)
y0(θ)

◆

=

 

cos(θ
√

n) ρp
n
sin(θ

√

n)

−

p
n

ρ
sin(θ

√

n) cos(θ
√

n)

!

✓

y0
y0
0

◆

(x, x0) = (y, y0) = 0

φx(s) ≡ θ
√
1− n =

s

ρ

√
1− n φy(s) ≡ θ

√
n =

s

ρ

√
n

✓

x(s)
x0(s)

◆

=

 

cosφx(s)
ρp
1−n

sinφx(s)

−

p
1−n

ρ
sinφx(s) cosφx(s)

!

✓

x0

x0
0

◆
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Visualization of Betatron Oscillations 

  Simplest case: constant uniform vertical field (n=0) 

 

 

  More complicated strong focusing 

design 

cosine-like 

sine-like 

cosine-like sine-like 
x0 = 0, x

0

0
6= 0 x0 6= 0, x

0

0
= 0

θ θ

design design 
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Visualization of Betatron Oscillations, Tunes 

  What happens for 0<n<1? 

  Example picture below has 5 䇾turns䇿 with sin(0.89 θ) 

  The betatron oscillation precesses, not strictly periodic 

  Betatron tune QX,Y: number of cycles made for every 
revolution or turn around accelerator 

 

design 

turn 1 
2 

3 

4 

5 

Qx =
1

2π

√

1− n(2π) =
√

1− n

Qy =
1

2π

√

n(2π) =
√

n

Frequency of betatron oscillations 
relative to turns around accelerator 

 
 For weak focusing: 

Q2

x
+Q2

y
= 1
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Transport Matrices: Piecewise Solutions 

  Linear transport matrices make piecewise solutions of 
equations of motion accessible 

✓

y(θ)
y0(θ)

◆

=

 

cos(θ
√

n) ρp
n
sin(θ

√

n)

−

p
n

ρ
sin(θ

√

n) cos(θ
√

n)

!

✓

y0
y0
0

◆

= MV (θ)

✓

y0
y0
0

◆

Weak focusing

bending magnets

Drifts

“Cell”

䇾Cell䇿 transport matrix:  

Mcell = M(θ)Mdrift

䇾One turn䇿 transport matrix:  

Mone turn = (M(θ)Mdrift)
4

Build accelerator optics out of 
䇾Lego䇿 transport matrices 

 (everything is awesome!) 
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Transport Matrices: Accelerator Legos 

  With linear fields, there are two basic types of Legos 

  Dipoles 

•  Often long magnets to bend design trajectory 

•  Entrance/exit locations can become important 

•  May or may not include focusing (䇾combined function䇿) 

•  Special case: drift when all B components are zero 

  Quadrupoles 

•  Design trajectory is straight! (no fields at x=y=0) 

•  Act to focus particles moving off of design trajectory 

•  Special case: 䇾thin lens䇿 approximation 

•  We’ll talk about quadrupoles tomorrow 

⇥B = B0ŷ + (xŷ + yx̂)

✓

∂By

∂x

◆

(A3) 

B0 6= 0

⇥B = (xŷ + yx̂)

✓

∂By

∂x

◆

B0 = 0
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Transport Matrices: Dipole 

  We have already derived a very general transport 
matrix for a dipole magnet with focusing 

  Taking n->0 (and being careful) gives the transport 

matrix for a dipole of bend angle θ without focusing 

φx(s) ≡ θ
√
1− n =

s

ρ

√
1− n φy(s) ≡ θ

√
n =

s

ρ

√
n









x(s)
x0(s)
y(s)
y0(s)









=









cos θ ρ sin θ 0 0
−

1

ρ
sin θ cos θ 0 0

0 0 1 ρθ

0 0 0 1

















x0

x0

0

y0
y0
0

















x(s)
x0(s)
y(s)
y0(s)









=











cosφx(s)
ρp
1−n

sinφx(s) 0 0

−

p
1−n

ρ
sinφx(s) cosφx(s) 0 0

0 0 cosφy(s)
ρp
n
sinφy(s)

0 0 −

p
n

ρ
sinφy(s) cosφy(s)



















x0

x0
0

y0
y0
0
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Transport Matrices: Drifts 

  For n=0, there is no horizontal field or vertical force 

  The vertical transport matrix here is for a field-free drift 

  This applies in both x,y planes when there is no field 









x(s)
x0(s)
y(s)
y0(s)









=









cos θ ρ sin θ 0 0
−

1

ρ
sin θ cos θ 0 0

0 0 1 ρθ

0 0 0 1

















x0

x0

0

y0
y0
0









✓

x(s)
x
0(s)

◆

=

✓

1 L

0 1

◆✓

x0

x
0

0

◆
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Weak Focusing Synchrotron (text section 2.5) 

  Back to our Lego machine 

  Pick a more symmetric cell 

  For                “one can show”  

Drifts

“Cell”

Weak focusing

bending magnets

l0

MH = Mdrift

✓

l0

2

◆

Mdipole

⇣

π

2

⌘

Mdrift

✓

l0

2

◆

l0 ⌧ πρ

Phase advance per cell : µH =

✓

1 +
l0

πρ

◆

π
√

1− n

2

Horizontal tune : QH =
4µH

2π
=

✓

1 +
l0

πρ

◆

√

1− n

Vertical tune : QV =

✓

1 +
l0

πρ

◆

√

n

C = 2πρ+ 4l0

Circumference 
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Weak Focusing Synchrotron Parameterization 

  We can write the cell transport matrix       in a form 
that is very similar to a rotation matrix 

  We will investigate this parameterization (and its non-

periodic lattice extensions) extensively later this week 

        is a length scale for the betatron oscillations 

  Details in Section 2.5 derive: 

  Note the familiar scaling with the radius of curvature    !   

MH

MH =

✓

cosµH βH sinµH

−

1

βH

sinµH cosµH

◆

βH

βH ≈
ρ

√
1− n

✓

1 +
l0

πρ

◆

βV ≈
ρ
√
n

✓

1 +
l0

πρ

◆

ρ
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What About Momentum? 

  So far we have assumed that the design trajectory 
particle and our particle have the same momentum 

  How do equations change if we break this assumption? 

  Expect only horizontal motion changes to first order 

p0 = design particle momentump = p0(1 + δ) where δ ⌘
∆p

p0
⌧ 1

d2x

dθ2
+

✓

qBy

p
R− 1

◆

R = 0 ⇒
d2x

dθ2
+

✓

qBy

p0(1 + δ)
R− 1

◆

R = 0

d2x

dθ2
+

✓

qBy

p0
(1− δ)R− 1

◆

R = 0

d2x

dθ2
+

✓

qBy

p0
R− 1

◆

R = δ
R2qBy

p0
= ρδ

d2x

dθ2
+ (1− n)x = ρδ

Add inhomogeneous term to 

original δ=0 equation of motion 

(A2) 

(A2) 

(A1) 
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Solutions of Dispersive Equations of Motion 

  This momentum effect is called dispersion 

  Similar to prism light dispersion in classical optics 

  Solutions are simple harmonic oscillator solutions 

  But now we add a specific inhomogeneous solution 

  Constants A,B again related to initial conditions 

δ is constant 

d2y

dθ2
+ ny = 0

dx

dθ
=

√

1− n[−A sin(θ
√

1− n) +B cos(θ
√

1− n)]

(x0, x
0

0
)

d2x

dθ2
+ (1− n)x = ρδ

x(θ) = A cos(θ
√

1− n) +B sin(θ
√

1− n) +
ρ

1− n
δ inhomogeneous term! 

A = x0 −

ρ

1− n
δ B =

ρ
√

1− n
x
0

0

(A4) 
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Solutions of Dispersive Equations of Motion 

  Write down solutions in terms of initial conditions 

  This can be now be 䇾conveniently䇿 written in terms of 

a 3x3 matrix: 

 

As usual, this can be simplified for n=0 (pure dipole) 

 Note that δ has become a 䇾coordinate䇿! 

x0(θ) = −

√

1− n

ρ
sin(θ

√

1− n)x0 + cos(θ
√

1− n)x0

0
+

1
√

1− n
sin(θ

√

1− n)δ0

x0(θ) =
1

ρ

dx

dθ
= −

√

1− n

ρ
sin(θ

√

1− n)x0 + cos(θ
√

1− n)x0

0
+

1
√

1− n
sin(θ

√

1− n)δ0

δ = δ0





x(θ)
x0(θ)
δ(θ)



 =







cos(θ
√

1− n) ρp
1−n

sin(θ
√

1− n) ρ

1−n
[1− cos(θ

√

1− n)]

−

p
1−n
ρ

sin(θ
√

1− n) cos(θ
√

1− n) 1p
1−n

sin(θ
√

1− n)

0 0 1











x0

x0
0

δ0
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Sector Dipole Magnets 

  This transport matrix applies for any angle  

  So it is also the transport matrix of any section of 

constant field, and now includes dispersion. 

  In particular, it is the horizontal transport for a 
combined function sector dipole of length  

  With n=0 this is the horizontal transport for a sector 
dipole of length             , bend angle   , and radius of 

curvature    

  Sector dipole: design trajectory at entrance and exit of 

magnet is perpendicular to magnet face 

Mdipole =





cos θ ρ sin θ ρ(1− cos θ)
−

1
ρ
sin θ cos θ sin θ

0 0 1





θ

L = ρθ

L = ρθ θ

ρ
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Example: 180 Degree Dipole Magnet 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

⊗ 

electrons moving through uniform vertical B field 





x(θ)
x0(θ)
δ(θ)



 =







cos(θ
√

1− n) ρp
1−n

sin(θ
√

1− n) ρ

1−n
[1− cos(θ

√

1− n)]

−

p
1−n
ρ

sin(θ
√

1− n) cos(θ
√

1− n) 1p
1−n

sin(θ
√

1− n)

0 0 1











x0

x0
0

δ0





n = 0 ⇒ MH(θ) =





cos θ ρ sin θ ρ(1− cos θ)
−

1

ρ
sin θ cos θ sin θ

0 0 1





n = 0, θ = π ⇒ MH(θ) =





−1 0 2ρ
0 −1 0
0 0 1





For initial coordinates





0

0

±δ









x

x
0

δ



 =





−1 0 2ρ

0 −1 0

0 0 1









0

0

±δ



 =





±2ρδ

0

±δ





This makes sense from p/q=Bρ! 
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Momentum Compaction 

  Different momenta particles will have different path 
lengths              around the accelerator 

  Naively 

  This is not necessarily true (as we’ll see!) 

  This is quantified by a quantity called momentum 

compaction 

  Ratio of fractional change in pathlength to fractional 

change in momentum 

larger p → larger ρ → larger L

L ≡

I
ds

αp ≡

(dL/L)

(dp/p)
=

p

L

dL

dp
δ ≡

dp

p
recall 
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Transition Energy 

  Relativistic particle motion in a periodic accelerator (like a 

synchrotron) creates some weird effects 

  For particles moving around with frequency     in circumference  

  At 䇾transition䇿,               and particle revolution frequency does not 

depend on its momentum  

Reminiscent of a cyclotron but now we’re strong focusing and at constant 

radius! 

    At               higher momentum gives lower revolution frequency 

     At               higher momentum gives higher revolution frequency 

 

 Hadron synchrotrons can accelerate through transition!  

ω

γr > γtr

γr < γtr

electron ring 

electron linac 

C

ω =
2πβc

C
⇒

dω

ω
=

dβ

β
−

dC

C
=

✓

1

γ2
−

1

γ2

tr

◆

δ

αp ≡

dC

C
/δ =

p

C

dC

dp
γtr ≡

1
√
αp

momentum compaction transition gamma 

γ = γtr
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Momentum Compaction: A Classic Example 

  Consider a satellite in circular orbit 

  A classical gravity/centripetal force problem 

F =

GMm

R2
=

mv2

R

GM

R
= v2 ω = 2πf = 2π

⇣ v

2πR

⌘

=
v

R

2v dv = −
GM

R2
dR ⇒

dv

dR
= −

v

2R

αp ≡

dC

C

/

dp

p
=

dR

R

/

dv

v
=

v

R

/

dv

dR
momentum compaction 

momentum compaction αp = −2

Raising momentum p lowers orbit radius, raises angular frequency   ω
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Momentum Compaction: Weak Focusing Synchrotron 

  Recall 

  Now  

Drifts

“Cell”

Weak focusing

bending magnets

l0

C = 2πρ+ 4l0

Circumference 

p

q
= Bρ

dp

p
= δ =

dρ

ρ
+

dB

B
=

✓

1 +
ρ

B

∂B

∂ρ

◆

dρ

ρ

δ = (1− n)
dρ

ρ
n ≡ −

ρ

B0

✓

∂By

∂x

◆

αp ≡

dC/C

dp/p
=

(dC/dρ)(dρ/C)

δ

=
2πρ

C(1− n)
=

✓

1 +
2l0
πρ

◆

−1

(1− n)−1
✓ ◆

Horizontal tune : QH =
4µH

2π
=

✓

1 +
l0

πρ

◆

√

1− n

✓ ◆

αp ≈ Q−2

H


