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Overview 

  Section 4.1: Back to Maxwell 

  Parameterizing fields in accelerator magnets 

  Symmetries, comments about magnet construction 

  Sections 4.2-3: Relating currents and fields 

  Equipotentials and contours, dipoles and quadrupoles 

  Thin magnet kicks and that ubiquitous rigidity 

  Complications: hysteresis, end fields 

  Section 4.4: More details about dipoles 

  Sector and rectangular bends; edge focusing 

  Extras: Superconducting magnets 

  RHIC, LHC, the future 

  Section 4.5: Ideal Solenoid (homework!) 
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Other References 

  Magnet design and a construction is a specialized field 
all its own 

  Electric, Magnetic, Electromagnetic modeling 

•  2D, 3D, static vs dynamic 

  Materials science 

•  Conductors, superconductors, ferrites, superferrites 

  Measurements and mapping 

•  e.g. g-2 experiment: 1 PPM field uniformity, 14m SC dipole 

  Entire USPAS courses have been given on just 

superconducting magnet design 

  http://www.bnl.gov/magnets/staff/gupta/scmag-course/ 

(Ramesh Gupta and Animesh Jain, BNL) 
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g-2 magnet 

  Magnet moved from 

Brookhaven to Fermilab in 2013 

  17 tons, 44m circumference, 18 

cm gap 

  35 days, over 3200 miles 

  http://muon-g-2.fnal.gov/bigmove/ 

 

At Brookhaven  

At Fermilab 

On the move 
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EM/Maxwell Review I 

  Recall our relativistic Lorentz force 

  For large γ common in accelerators, magnetic fields are 

much more effective for changing particle momenta 

  Can mostly separate E (RF, septa) and B (DC magnets) 

•  Some exceptions, e.g. plasma wakefields, betatrons, RFQ 

  Easiest/simplest: magnets with constant B field 

  Constant-strength optics 

•  Most varying B field accelerator magnets change field so 

slowly that E fields are negligible 

•  Consistent with our assumptions for 䇾standard canonical 

coordinates䇿, p 49 Conte and MacKay and yesterday 

d(γm⇥v)

dt
= q

⇣

⇥E + ⇥v × ⇥B
⌘
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EM/Maxwell Review II 

  Maxwell’s Equations for         and magnetization      are 

  A magnetic vector potential      exists  

  Transverse 2D (Bz=Hz=0), paraxial approx (px,y<<p0) 

  Away from magnet coils (                       ) 

  Simple homogeneous differential equations for fields 

⇤⌅ ·
⇤B = 0 ⇤⌅⇥ ⇤H = ⇤j + ε0

⇥ ⇤E

⇥t
= ⇤j ⇤H ⇤ ⇤B/µ− ⇤M

!B = !⇥× !A since !⇥ ·
!⇥× !A = 0

∂Bx

∂x
+

∂By

∂y
= 0

∂Bx

∂y
−

∂By

∂x
= 0

!B, !H !M

!A

!j = 0, !M = 0
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Parameterizing Solutions 

  What are solutions to these equations? 

  Constant field:  

•  Dipole fields, usually either only Bx or By 

•  360 degree (2 π) rotational 䇾symmetry䇿 

  First order field: 

•  Maxwell gives Bn=Bxx=-Byy and Bs=Bxy=Byx 

•  Quadrupole fields, either normal Bn or skew Bs 

•  180 degree (π) rotational symmetry 

•  90 degree rotation interchanges normal/skew 

  Higher order… 

∂Bx

∂x
+

∂By

∂y
= 0

∂Bx

∂y
−

∂By

∂x
= 0

!B = Bxx
0x̂+Byy

0ŷ

!B = (Bxxx+Bxyy)x̂+ (Byxx+Byyy)ŷ

!B = Bn(xx̂− yŷ) +Bs(xŷ + yx̂)
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Visualizing Fields I 

Dipole and 䇾skew䇿 dipole Quad and skew quad 

Sextupole and skew sextupole 
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Visualizing Dipole and Quadrupole Fields II 

  LHC dipole: By gives horizontal bending 

  LEP quadrupole: By on x axis, Bx on y axis 

  Horizontal focusing=vertical defocusing or vice-versa 

  No coupling between horizontal/vertical motion 

•  Note the nice 䇾harmonic䇿 field symmetries 

LHC 
dipole 

field 

LEP 
quadrupole 

field 
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General Multipole Field Expansions 

  Rotational symmetries, cylindrical coordinates 

  Power series in radius r with angular harmonics in θ 

  Need 䇾reference radius䇿 a (to get units right) 

  (bn,an) are called (normal,skew) multipole coefficients 

  We can also write this succinctly using de Moivre as 

By = B0

∞
X

n=0

⇣

r

a

⌘n

(bn cosnθ − an sinnθ)

Bx = B0

∞
X

n=0

⇣

r

a

⌘n

(an cosnθ + bn sinnθ)

x = r cos θ y = r sin θ

Bx − iBy = B0

∞
X

n=0

(an − ibn)

✓

x+ iy

a

◆n



11 T. Satogata / January 2015          USPAS Accelerator Physics 

But Do These Equations Solve Maxwell? 

  Yes  Convert Maxwell’s eqns to cylindrical coords 

  Aligning r along the x-axis it’s easy enough to see 

  In general it’s (much, much) more tedious but it works 

∂Bx

∂x
+

∂By

∂y
= 0

∂Bx

∂y
−

∂By

∂x
= 0

∂(ρBρ)

∂ρ
+

∂Bθ

∂θ
= 0

∂(ρBθ)

∂ρ
−

∂Bρ

∂θ
= 0

∂

∂x
⇒

∂

∂r

∂

∂y
⇒

1

r

∂

∂θ

∂r

∂x
=

1

cos θ
,
∂θ

∂x
=

−1

r sin θ
,
∂r

∂y
=

1

sin θ
,
∂θ

∂y
=

1

r cos θ

∂Bx

∂x
=

∂Bx

∂r

∂r

∂x
+

∂Bx

∂θ

∂θ

∂x
. . .
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Multipoles 

(b,a)n 䇾unit䇿 is 10-4 (natural scale)     (b,a)n (US) = (b,a)n+1 

(European)! 

N N 

N 

S 

S 

S 
Elettra magnets 
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Multipole Symmetries 

  Dipole has 2π rotation symmetry (or π upon current reversal) 

  Quad has π rotation symmetry (or π/2 upon current reversal) 

  k-pole has 2π/k rotation symmetry upon current reversal 

  We try to enforce symmetries in design/construction 

  Limits permissible magnet errors 

  Higher order fields that obey main field symmetry are called 

allowed multipoles 

RCMS half-dipole 

laminations 

(W. Meng, BNL) 
䇾H style dipoles䇿 

(with focusing like 

betatron) 
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Multipole Symmetries II 

  So a dipole (n=0, 2 poles) has allowed multipoles: 

  Sextupole (n=2, 6 poles), Decapole (n=4, 10 poles)... 

  A quadrupole (n=1, 4 poles) has allowed multipoles: 

  Dodecapole (n=5, 12 poles), Twenty-pole (n=9, 20 poles)… 

  General allowed multipoles: (2k+1)(n+1)-1 

  Or, more conceptually, (3,5,7,…) times number of poles 

  Other multipoles are forbidden by symmetries 

  Smaller than allowed multipoles, but no magnets are perfect 

•  Large measured forbidden multipoles mean fabrication or 

fundamental design problems! 

  Better magnet pole face quality with punched laminations 

  Dynamics are usually dominated by lower-order multipoles 
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4.2: Equipotentials and Contours 

Z. Guo et al,  NIM:A 691, 
pp. 97-108, 1 Nov 2012. x position [mm] 

y
 p

o
s
it
io

n
 [
m

m
] 
Field-defining Iron 
(high permeability) 

Current carrying 
conductors (coils) 

Field lines perpendicular 
to iron surface  
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4.2: Equipotentials and Contours 

  Let’s get around to designing some magnets 

  Conductors on outside, field on inside 

  Use high-permeability iron to shape fields: iron-dominated 

•  Pole faces are very nearly equipotentials, ⊥ B,H field 

•  We work with a magnetostatic scalar potential Ψ 

•  B, H field lines are ⊥ to equipotential lines of Ψ


 

This comes from integrating our B field expansion. 

Let’s look at normal multipoles Gn and pole faces… 

!H = !rΨ

Ψ =

∞
X

n=0

a

n+ 1

⇣

r

a

⌘

n+1

[Fn cos((n+ 1)θ) +Gn sin((n+ 1)θ)]

where Gn ≡ B0bn/µ0, Fn ≡ B0an/µ0
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Equipotentials and Contours II 

  For general Gn normal multipoles (i.e. for bn) 

  Dipole (n=0): 

  Normal dipole pole faces are y=constant 

  Quadrupole (n=1): 

  Normal quadrupole pole faces are xy=constant (hyperbolic) 

  So what conductors and currents 

    are needed to generate these fields? 

Ψ(dipole) ∝ r sin θ = y

Ψ(equipotential for bn) ∝ rn+1 sin[(n+ 1)θ] = constant

Ψ(quadrupole) ∝ r2 sin(2θ) = 2xy
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Dipole Field/Current 

  Use Ampere’s law to 

    calculate field in gap 

  N 䇾turns䇿 of conductor 

    around each pole 

  Each turn of conductor 

carries current I


  Field integral is through N-S poles and (highly 

permeable) iron (including return path)  

  NI is in 䇾Amp-turns䇿, µ0~1.257 cm-G/A 

  So a=2cm, B=600G requires NI~955 Amp-turns 

(C-style dipole) 

2NI =

I
!H · d!l = 2aH ⇒ H =

NI

a
, B =

µ0NI

a

∆x0 =
BL

(Bρ)
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Wait, What’s That Δx’ Equation?  

  This is the angular transverse kick from a thin hard-
edge dipole, like a dipole corrector 

  Really a change in px but paraxial approximation applies 

  The B in (Bρ) is not necessarily the main dipole B 

  The ρ in (Bρ) is not necessarily the ring circumference/2π


  And neither is related to this particular dipole kick!  

 

∆x0 =
BL

(Bρ) Rigidity: property of beam  (really p/q!) 

Field, length: Properties of magnet 

p0
∆px

By, L

Fx =
∆px
∆t

= q(βc)By ∆t = L/(βc)

∆px = qLBy

∆x0
≈

∆px

p
=

q

p
LBy =

ByL

(Bρ)
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Quadrupole Field/Current 

  Use Ampere’s law again 

  Easiest to do with magnetic 

    potential Ψ, encloses 2NI 

 

  Quadrupole strengths are expressed as transverse gradients  

 

 

Ψ(a, θ) =
a

2

B0b1

µ0

sin(2θ)

2NI =

I
⇥H · d⇥l = Ψ(a,π/4)−Ψ(a,−π/4) =

aB0b1
µ0

Ψ = NI sin(2θ) =
2NI

a2
xy

!H = rΨ =
2NI

a2
(yx̂+ xŷ)

∆x0 =
B0L

(Bρ)
x

!B =
2µ0NI

a2
(yx̂+ xŷ)

B0
≡

∂By

∂x
|y=0 =

∂Bx

∂y
=

2µ0NI

a2

(NB: Be careful, ‘ has different meaning in B’, B’’, B’’’…) 
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Quadrupole Transport Matrix 

  Paraxial equations of motion for constant quadrupole field 

  Integrating over a magnet of length L gives (exactly) 

d2x

ds2
+ kx = 0

d2y

ds2
− ky = 0 s ≡ βct

k ≡

B0

(Bρ)
=

2µ0NI

a2

✓

q

p

◆

Focusing 
Quadrupole 

Defocusing 
Quadrupole 

✓

x

x
0

◆

=

 

cos(L
√

k) 1p
k
sin(L

√

k)

−

√

k sin(L
√

k) cos(L
√

k)

!

✓

x0

x
0
0

◆

= MF

✓

x0

x
0
0

◆

✓

y

y0

◆

=

 

cosh(L
√

k) 1p
k
sinh(L

√

k)
√

k sinh(L
√

k) cosh(L
√

k)

!

✓

y0
y0
0

◆

= MD

✓

y0
y0
0

◆
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Thin Quadrupole Transport Matrix 

  Quadrupoles are often “thin” 

  Focal length is much longer than magnet length 

  Then we can use the thin-lens approximation 

 

where f=1/(kL) is the quadrupole focal length  

Focusing 
Quadrupole 

Thin quadrupole 
approximation 

p
kL ⌧ 1

MF,D =

✓

1 0

⌥kL 1

◆

=

✓

1 0

⌥
1

f
1

◆

Defocusing 
Quadrupole 

∆x0 =
B0L

(Bρ)
x

✓

x

x
0

◆

=

 

cos(L
√

k) 1p
k
sin(L

√

k)

−

√

k sin(L
√

k) cos(L
√

k)

!

✓

x0

x
0
0

◆

= MF

✓

x0

x
0
0

◆

✓

y

y0

◆

=

 

cosh(L
√

k) 1p
k
sinh(L

√

k)
√

k sinh(L
√

k) cosh(L
√

k)

!

✓

y0
y0
0

◆

= MD

✓

y0
y0
0

◆
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Picturing Drift and Quadrupole Motion 

KL=0.5 m-1, f=2m KL=0.1 m-1, f=20m 

KL=20 m-1, f=0.05m KL=-0.1 m-1, f=-20m 
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Picturing Drift and Quadrupole Motion 

KL=0.5 m-1, f=2m KL=0.1 m-1, f=20m 

KL=20 m-1, f=0.05m KL=-0.1 m-1, f=-20m 

Thin Quadrupole Approximations 
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Higher Orders 

  We can follow the full expansion for 2(n+1)-pole: 

  For the sextupole (n=2) we find the nonlinear field as 

  Now define a strength as an nth derivative 

Ψn = NI
⇣ r

a

⌘n+1

sin((n+ 1)θ)

Hx = (n+ 1)
NI

a

⇣ r

a

⌘n

sinnθ Hy = (n+ 1)
NI

a

⇣ r

a

⌘n

cosnθ

!B =
3µ0NI

a3
[2xyx̂+ (x2 + y2)ŷ]

∆x0 =
1

2

B00L

(Bρ)
(x2 + y2)B00 ≡

∂2By

∂x2
|y=0 =

6µ0NI

a3

(NB: Be careful, ‘ has different meaning in B’, B’’, B’’’…) 
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Hysteresis 

  Magnets with variable 
current carry 䇾memory䇿 

Hysteresis is quite 

important in iron-

dominated magnets 

  Usually try to run 

magnets 䇾on 

hysteresis䇿 

e.g. always on one side 

of hysteresis loop 

Large spread at large 

field (1.7 T): saturation 

  Degaussing 

SPS Main 
Dipole Cycle 

BR: Remanence 

HC: Coercive field 
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End Fields 

  Magnets are not infinitely long: ends are important! 

  Conductors: where coils usually come in and turn around 

  Longitudinal symmetries break down 

  Sharp corners on iron are first areas to saturate 

  Usually a concern over distances of ±1-2 times magnet gap 

•  A big deal for short, large-aperture magnets; ends dominate! 

  Solution: simulate… a lot 

  Test prototypes too 

  Quadratic end chamfer eases 

    sextupoles from ends (first 

    allowed harmonic of dipole) 

  More on dipole end focusing… 
PEFP prototype magnet (Korea) 

9 cm gap,1.4m long 
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4.4: Dipoles, Sector and Rectangular Bends 

  Sector bend (sbend) 

  Beam design entry/exit angles are ⊥ to end faces 

  Simpler to conceptualize, but harder to build 

  Rectangular bend (rbend) 

  Beam design entry/exit angles are half of bend angle 

  Easier to build, but must include effects of edge focusing 

θ

θ

θ/2θ/2
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Sector Bend Transport Matrix 

  You did this earlier (eqn 3.109 of text) 

  Has all the 䇾right䇿 behaviors 

  But what about rectangular bends? 

Msector dipole =

















cos θ ρ sin θ 0 0 0 ρ(1− cos θ)
−

1
ρ
sin θ cos θ 0 0 sin θ

0 0 1 ρθ 0 0
0 0 0 1 0 0

− sin θ −ρ(1− cos(θ)) 0 0 1 −ρ(θ − sin θ)
0 0 0 0 0 1
















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Dipole End Angles 

  We treat general case of symmetric dipole end angles 

  Superposition: looks like wedges on end of sector dipole 

  Rectangular bends are a special case 
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Kick from a Thin Wedge 

  The edge focusing calculation requires the kick from 
a thin wedge 

What is L? (distance in wedge) 

 

 

 

 

 

 

 

  Here ρ is the curvature for a particle of this momentum!! 

x

α

α

2

L

Bz∆x0 =
BzL

(Bρ)

tan

⇣

α

2

⌘

=
L/2

x

L = 2x tan

⇣

α

2

⌘

≈ x tanα

So ∆x
0 =

Bz tanα

(Bρ)
x =

tanα

ρ
x
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Dipole Matrix with Ends 

  The matrix of a dipole with thick ends is then 

  Rectangular bend is special case where α=θ/2 

Medge−focused dipole =







cos(θ−α)
cosα ρ sin θ ρ(1− cos θ)

−

sin(θ−2α)
ρ cos2 α

cos(θ−α)
cosα

sin(θ−α)+sinα

cosα

0 0 1







Medge−focused dipole = Mend lensMsector dipoleMend lens

Mend lens =





1 0 0
tanα

ρ
1 0

0 0 1





Msector dipole(x, x
0, δ) =





cos θ ρ sin θ ρ(1− cos θ)
−

1
ρ
sin θ cos θ sin θ

0 0 1




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End Field Example (from book) 

  p. 85 of text 

  Field lines go from –y to +y for a 

positively charged particle 

  Bx <0 for y>0; Bx>0 for y<0 

•  Net focusing! 

  Field goes like sin(α) 

•  get cos(α) from integral length 

N 

S 

Side view 
Overhead 

view, α>0 

∆y0 =
Bxlfringe

(Bρ)
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Other Familiar Dipoles 

  Weaker, cheaper dipoles can be made by conforming 
coils to a beam-pipe (no iron) 

  Relatively inexpensive, but not very precise 

  Field quality on the order of percent 
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Normal vs Superconducting Magnets  

  Note high field strengths (red) where flux lines are 

densely packed together 

LHC dipole magnets (SC) LEP quadrupole magnet (NC) 
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RHIC Dipole/Quadrupole Cross Sections 

RHIC cos(θ)-style superconducting magnets and yokes 

 NbTi in Cu stabilizer, iron yokes, saturation holes 

 Full field design strength is up to 20 MPa (3 kpsi) 

  4.5 K, 3.45 Tesla 
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Rutherford Cable 

  Superconducting cables: NbTi in Cu matrix 

  Single 5 um filament at 6T carries ~50 mA of current 

  Strand has 5-10k filaments, or carries 250-500 A 

  Magnet currents are often 5-10 kA: 10-40 strands in cable 

•  Balance of stresses, compactable to stable high density 
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Superconducting Dipole Magnet Comparison 

 

4T, 90mm 

6.8 T, 50 mm 

4.7T, 75 mm 
3.4T, 80mm 

LHC 

8.36T, 56mm 
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LHC cryostat 
1.9 K, 8.36 T 

(~5 T achieved) 



40 T. Satogata / January 2015          USPAS Accelerator Physics 

Superconducting Magnet Transfer Function 

  Transfer function: relationship between current/field 

  Persistent currents: surface currents during magnet ramping 

Luca Bottura, CERN 
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Quenching 

  Magnetic stored energy 

  LHC dipole 

Martin Wilson, JUAS Feb 2006 

the most likely 

cause of death 
for a 

superconducting 

magnet 

E =

B2

2µ0

B = 5 T, E = 10
7
J/m

3

E =
LI

2

2
L = 0.12 H I = 11.5 kA

⇒ E = 7.8× 10
6
J

22 ton magnet

⇒ Energy of 22 tons, v = 92 km/hr!
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•  Resistive region starts somewhere 

in the winding at a point: A 

problem! 

•  Cable/insulation slipping 

•  Inter-cable short; insulation failure 

•  Grows by thermal conduction 

•  Stored energy ½LI2 of the magnet 

is dissipated as heat 

•  Greatest integrated heat 

dissipation is at localized point 

where the quench starts 

•  Internal voltages much greater 

than terminal voltage (= Vcs 

current  supply) 

•  Can profoundly damage magnet 

•  Quench protection is important! 

Martin Wilson, JUAS Feb 2006 

Quench Process 
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Quench Training 

  Intentionally raising current until magnet quenches 

  Later quenches presumably occur at higher currents 

•  Compacts conductors in cables, settles in stable position 

  Sometimes necessary to achieve operating current 

RHIC main dipole quench training model 

Red: quench training data (62 quenches) 

Blue: exponential fit 

“Energy Upgrade as Regards Quench Performance”, W.W. MacKay and S. Tepikian, on class website 
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Direct-Wind Superconducting Magnets (BNL) 

  6T Iron-free (superconducting) 

  Solid state coolers (no Helium) 

  Field containment (LC magnet) 

  䇾Direct-wind䇿 construction 

Linear Collider magnet 

World’s first 䇾direct wind䇿 coil machine at BNL 
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FELs: Wigglers and Undulators 

  Used to produce synchrotron radiation for FELs 

  Often rare earth permanent magnets in Halbach arrays 

  Adjust magnetic field intensity by moving array up/down 

  Undulators: produce nm wavelength FEL light from ~cm 
magnetic periods (γ2 leverage in undulator equation) 

•  Narrow band high spectral intensity 

  Wigglers: higher energy, lower flux, more like dipole 
synchrotron radiation 

•  More about synchrotron light and FELs etc next week 

•  LCLS: 130+m long undulator! 
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Feedback to Magnet Builders 

http://www.agsrhichome.bnl.gov/AP/ap_notes/RHIC_AP_80.pdf 


