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Weak vs. Strong Focusing
• Weak focusing rings tend to have beams with large transverse dimensions
• 69,000 ton yoke of Dubna’s 10 GeV Synchrophasotron vs. NICA booster
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Strong Focusing
• Using alternating focusing and defocusing lenses can provide stable transverse dynamics 

with stronger focusing and therefore higher betatron tunes.
• Lattice can be built using combined-function magnets with alternating gradients (AGS, 

Serpukhov) or separate dipole and quadrupole magnets (separated-function lattices, e.g. 
RHIC).

Horizontal plane:

Vertical plane:
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Stability of Linear Motion
• The transfer matrix of a periodic cell can be constructed by successively multiplying the 

matrices of its constituting elements: dipoles, quadrupoles, and drifts. It could be the matrix of 
the whole ring or of the periodic section of the ring.

• Let us examine its eigenvalues to learn about the stability of the linear motion.
Characteristic polynomial of an nn matrix:

Characteristic equation:
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Stability of Linear Motion
• Characteristic equation of a 22 matrix:

• Since

• Either both roots are real or

then

• The roots of the characteristic equation
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Liapunov Stability
• A point      is called a fixed point of the map       if        . A system is said to be Liapunov 

stable about a fixed point      if for each           there exists a           such that if 
then                                  for all                  .

• I.e. there is some neighborhood about the fixed point which remains bounded for all time.
• For the linear transfer matrix

• Cases with degenerate eigenvalues

are either not bounded such as

or bounded but unstable (an integer or half-integer betatron tune).
• Cases with non-generate eigenvalues but with zero off-diagonal terms, i.e.

are also obviously unstable, e.g.  
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Liapunov Stability
• Assuming eigenvalues are not degenerate and           we can find two linearly independent 

eigenvectors (case of            and           can be considered similarly)

• Expand a vector in terms of the eigenvectors

• The trajectory deviation after n turns

Since               the motion can be unstable if either 
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Liapunov Stability
• If

then 

• If 

• If

• corresponds to the case of generate eigenvalues
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Parameterization of Stable Matrix
• Consider the case of stable motion

• The diagonal elements can be written as

• Since                                       and we can define

• Partition       as
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Matrix Parameterization
• A stable transfer matrix can be written as

• Since the sign of      is ambiguous, we may choose     (and therefore   ) to be positive.

• and    are often called the Twiss parameters.
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FODO Cell Example
• One of the simplest periodic building blocks
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FODO Cell Example
• Let’s examine its transport matrix for horizontal motion
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Analytic Approach
• Equations of motion
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Analytic Approach
• Equations of motion
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Hill’s Equation
• Let us first consider the general homogeneous equation

with

• According to Floquet’s theorem, solutions have the form

where           is the amplitude function periodic with the same period     and
is a non-periodic phase of the oscillations.
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Hill’s Equation
• Substituting one of the solutions into the Hill’s equation

• This gives
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General Solution
• The general solution is

• Initial conditions at
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General Solution
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General Solution
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General Solution
• Defining

• is called the betatron function,          is called the betatron phase, and           is 
sometimes called a correlation function. Since           is periodic, both          and           are 
also periodic with the same period.

• We note
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General Solution

• Note

• Matrix for one period
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Betatron Tunes
• Betatron phase advance over one period

• The number of oscillations per turn is called a betatron tune

• The betatron tunes are global parameters of the ring, i.e. the phase advance does not 
depend on the starting point of the integration.

• In an uncoupled case, the fraction parts of the tunes can be readily obtained from the 
diagonal 22 blocks of the transfer matrix:
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Courant-Snyder Invariant
• The particle trajectory can be written as

where
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Courant-Snyder Invariant
• We can show that this quantity is conserved along the orbit
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Courant-Snyder Invariant
• An invariant of motion called Courant-Snyder invariant

• This equation describes a skew ellipse in the phase space with an area of

• For a periodic lattice, the particle lies on an ellipse determined by its initial conditions.
• Since the Twiss parameters are independent of initial conditions, there is a family of similar 

inscribed ellipses corresponding to different values of     .
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Emittance
• A particle inside a certain ellipse has a phase space trajectory that stays inside the ellipse on 

successive turns since it is also an inscribed non-intersecting ellipse.
• Similarly, any particle outside an ellipse stays outside.
• The phase space region contained within the largest ellipse than an accelerator is able to 

transport is called the acceptance or admittance.
• It is convenient to choose an ellipse

containing a certain fraction of the beam, e.g. 39% (1 or rms), 90% (4.6), or 95% (6). The 
ellipse will always contain the same fraction of the beam. This is another manifestation of 
Liouville’s theorem.

• The area of the selected ellipse  is called the emittance. It is quoted with the factor of 
explicitly written out.
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Beam Envelope
• The trajectory of a particle is given by

• The transverse amplitude is

• The rms envelope of the beam is

Thus,              can be interpreted as the beam envelope function specifying the transverse 
size of the beam as a function of   . Of course, the horizontal and vertical beam sizes are 
determined by their respective betatron functions and emittances. 
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Adiabatic Invariants
• Let us find an invariant of motion preserved during acceleration. The rate of energy change 

during acceleration is slow on the time scale of betatron oscillations. An adiabatic 
approximation applies, i.e. we can assume a slow approximately uniform acceleration of 
particles with no heating of the beam in its rest frame. 

• The adiabatic approximation allows use of the Poincaré-Cartan integral invariant:

where    and    are canonically conjugate coordinates and the integration is over one period of 
the betatron oscillations.

• For horizontal motion:
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Adiabatic Invariants
• The horizontal invariant becomes 

where we found a quantity invariant under acceleration called the normalized emittance:

• Similarly, for the vertical motion:

• If the energy is adiabatically increased the area of the        ellipse remains constant while 
the area of the            ellipse shrinks. This effect is called adiabatic damping.
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Dispersion
• To account for momentum deviation, consider the horizontal equation of motion with the 

inhomogeneous term: 

• The solution may be written as

where          and          are solutions of the homogeneous equation and           is a particular 
solution of the inhomogeneous equation with           having the initial conditions

• The slope is given by

• The constant-energy trajectory equation in the matrix form is then
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Dispersion
• Consider the eigenvalues of a 1-turn matrix. The characteristic equation is 

The eigenvalues of the 22 matrix were obtained before

and

• Let us write the eigenvector corresponding to the 3rd eigenvalue as

• The periodic function     is called the dispersion function

where the matrix elements are evaluated for the periodic cell starting at position   .
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Dispersion
• Solving for     and

• The dispersion, nominally, is the closed orbit for a particle with           in linear approximation. 
Of course, the approximation and therefore the dispersion are only applicable when            .  
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Dispersion
• Note that the periodic dispersion function                      is not the same as the matrix 

element                           .
• is the inhomogeneous part of the trajectory due to the dispersion.
• The total horizontal trajectory component consists of a part due to the betatron oscillations 

and the part due to the dispersion:

• Since the two components are independent, their contributions to the total beam size must be 
added in quadrature:

using rms values of the involved quantities.
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Momentum Compaction
• The momentum compaction: relative change of circumference per unit change in relative 

momentum offset

• The circumference

• The momentum compaction then becomes
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