Weak vs. Strong Focusing

Weak focusing rings tend to have beams with large transverse dimensions
69,000 ton yoke of Dubna’s 10 GeV Synchrophasotron vs. NICA booster
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Strong Focusing

» Using alternating focusing and defocusing lenses can provide stable transverse dynamics
with stronger focusing and therefore higher betatron tunes.

e Lattice can be built using combined-function magnets with alternating gradients (AGS,
Serpukhov) or separate dipole and quadrupole magnets (separated-function lattices, e.g.
RHIC).
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Stability of Linear Motion

 The transfer matrix of a periodic cell can be constructed by successively multiplying the
matrices of its constituting elements: dipoles, quadrupoles, and drifts. It could be the matrix of
the whole ring or of the periodic section of the ring.

Z =Mz,

a b
M =
c d
* Let us examine its eigenvalues to learn about the stability of the linear motion.,
Characteristic polynomial of an nxn matrix:

P, (1) = det(M —/ll):Zn:A/I‘ =f[(/1—z,,)

A =R, (Q=detM)=] [ 4, A=-tr(M), A =1

Characteristic equation:

PM (l) =0
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Stability of Linear Motion

» Characteristic equation of a 2x2 matrix:

AP —tr(M)A+1=1°—-(a+b)A+1=0

* Since
det(M)=1=44, =
1
A = x
» Either both roots are real or
11 = 12

then

« 1 «
11:2,2:1— = 44 =1 = Mz‘:‘ﬂl‘:l

2
» The roots of the characteristic equation

A= %tr(l\/l ) +\/@tr(M )jz -1, A :%tr(M ) —\/@tr(M ))2 -1
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Liapunov Stability

* A point X, is called a fixed point of the map M if MX, = X,. A system is said to be Liapunov
stable about a fixed point X; if for each & > 0 there exists a 0 > 0 such that if HX — XOH <0
thenﬁl\/l "X —M ”xoﬁ< gforallQ<n<oo.

* l.e. there is some neighborhood about the fixed point which remains bounded for all time.
» For the linear transfer matrix
(o
° 0
» Cases with degenerate eigenvalues
A=A4=+] A=4=-1

are either not bounded such as

L (11 _ 1 0
drift: , thin quad:
01 -1/f 1

or bounded but unstable (an integer or half-integer betatron tune).
« Cases with non-generate eigenvalues but with zero off-diagonal terms, i.e. b=c =0

are also obviously unstable, e.g.
1.1 0 0.9 0
0 1/1.1 0 1/0.9
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Liapunov Stability

« Assuming eigenvalues are not degenerate and b = O we can find two linearly independent
eigenvectors (case of b =0 and ¢ # 0 can be considered similarly)

a b)( b)_[ab+bx,) b
(C dj£¥2j_(Cb+d&2j_”%2(&zj -

X2 = /11,2 —a

(b ) . (b
a~(ya) (a2

» Expand a vector in terms of the eigenvectors
X = Ap, + B0,
» The trajectory deviation after n turns

D, =[M"X=M"%;| =|A4'5, + BA)D,| <| A" | Al|o|+| A7 | B| |5,

1
Since A4, = — the motion can be unstable if either | A, |1
2
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Liapunov Stability

if | tr(M) |< 2

tr(M) =2cos u for some real angle
then

A :%[”(M ) £\Itr (M) —4J = cos % isin u =e*”

D, A" || Al|g,|+1 4, IB||5,] = Al|5,|+]|B||5,]| bounded forall n

e Iftr(M) >2
tr(M) = 2cosh u for some real 1z >0
A, , = cosh g tsinh g =e*
D, ~(e“)" | Al|D,| goes to infinity as n — o
« Iftr(M) < -2

tr(M) =-2cosh i for some real 1z >0
A, =—cosh g tsinh g = —e**
D, ~ (e“)"|B||5,| goes to infinity as n — o

tr(M ) = 2 corresponds to the case of generate eigenvalues
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Parameterization of Stable Matrix

Consider the case of stable motion
—2<tr(M)=2cosu <2

a b
M =
The diagonal elements can be written as
a=cosu+k, d=cosu—k wherek=(a-d)/2
bc=ad —det(M) =cos®u—k* —1=—-k* —sin’u
Since| cos i |< 1, sin u # 0 and we can define
K=asinu where « is real

bc =—-(1+a®)sin’u

Partition bc as

b=/gsinu
1+a® . .
C=- Sinu=—ysin u
—_—

/4
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Matrix Parameterization

e A stable transfer matrix can be written as

Y _(cos;wasin,u £sin u j

—ysin u COS 1 —aSin u

1 0 a p).
= COS 4 + sin u
0 1 -y -

J

=1cosu+Jsinu
« Since the sign of & is ambiguous, we may choose 3 (and therefore }) to be positive.

det(J) = B —a? =1

Jz{of—yﬁ 0 ]:_,
0 a’—yB

M =1cosu+Jsinu=e’*

s O, ,6’ , and ) are often called the Twiss parameters.
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FODO Cell Example

* One of the simplest periodic building blocks

B (m). B (m)

........ 1.45

F 140
/b 135
L 130
L 1.25
L 1.20
L 115
L 110
L 1.05
L 1.00
L 0.95

D (m)
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FODO Cell Example

* Let’'s examine its transport matrix for horizontal motion

I5ib

M — COS 1+ Sin i psin u
| —ysing  cosu—asinu

~ (-0.8250051897 16.06225553
~(-0.1559954483 1.82500519

COS 1, = %tr(M ) = %(—0.8250051897 +1.82500519) =0.5 =

u, =cos(05)=x/3, Q =ul(27)=1/6

sin 1, =~/3/2

a, =(M,, —cos ) /sin u, =(—0.8250051897 —0.5)/ (+/3/2) = -1.53
B. =M, Isinu, =16.06225553/ (~/3/2) =18.55

v, =—M,, Isin u, = 0.1559954483/ (\/3/2) =0.18
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Analytic Approach

« Equations of motion

H :_%_(Hﬁj(yr&—%(x’z + y’2)+...j+1+5
Vo,

dx oH dx'  oH

ds ax'' ds  oax

dx’ _X,,__aH q oA 140
ds oX P, ax yo,
1 OA B —_ 1 OA

Tlixipoy’ Y 1exlp ox

oB OB
x”:—i(l+5j(8yo+—xj+E —( 12 + 3 ij é_—k (s)x+—5
Po P OX P P p(s)

P~ Py OX
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« Equations of motion

where

I5ib

Analytic Approach

X"k (s)X =2

p(s)
y'+k,(s)y=0
oB
K, ()= 5+ 0
P, OX
oB
k,(s)=——"
P, OX

USPAS: Lecture on Strong Focusing Theory Vasiliy Morozov, January 2015

13 --



Hill’s Equation
» Let us first consider the general homogeneous equation
2" +k(s)z=0

with
K(s+L)=k(s)

» According to Floguet's theorem, solutions have the form
2(s) = ZA(S) T 4 (s)
Z,(s) = Aw(s)cos'¥(s)
Z5(S) = Bw(s)sin'Y(s)

where W(S) is the amplitude function periodic with the same period L and
Y (s) is a non-periodic phase of the oscillations.
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Hill’s Equation
« Substituting one of the solutions into the Hill's equation
z,(s) = Aw'cos ¥ — AwY¥'sin ¥
Zh (s) = AW’ cos ¥ — 2 AwW'P'sin ¥ — AW "sin ¥ — AW¥'? cos ¥
A[(W —wW¥P'"* + kw) cos¥ — (2w’ +w¥")sin ] =0
» This gives

W —w¥"”? +kw=0

WY +wWw¥"=0 = Y¥'=1/w’

w" + Kk —ig:o
W
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General Solution

The general solution is

Z(s) = Awcos ¥ + Bwsin¥

2'(s) = A(w' cos\P—Sln LP) +B(W'sin¥ + COSLP)

W W
2\ WCOS‘P. wsin ¥ A - A
7 ) Tweosw — MY ging S (Ll g | T g

W W

Initial conditions at S = Sy

) w2 Mo Frw, vy
(Joreenl) = (o)l

Z,j: F(quj)(Ajz F(W’\P)F_l(wovqjo)(zej
Z B Z,
M (s) = F(w, ¥)F~(w,, '¥,)
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General Solution

wcos ¥ wsin¥Y
F(w,¥) = I .
( ) w’cos\P—ﬁ W'sm\P+COSLP
W W
det(F) =1
. cos¥ .
w, sin'¥, + 2 —w,sinY¥,
W
F'(w,¥,)= 0
, sin',
—W, cos'¥, + w, cos ¥,
WO
M = F(w,¥)F*(w,,¥,)
. cos ¥ .
wcosW wsin ¥ W, sIn' + W S W, sin'?,
_ . 0
W’cos‘P—ﬂ w’sin‘PJrCOS\P , sin',
W W —W, cos'\, + " w, cos WV,
0
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General Solution

M{a(s) b(S)j
c(s) d(s)

a(s) =

w(s)

0

b(s) = w(s)w, sin[¥(s)-"¥,]

c(s)=—

d(s) =

I5ib

1+ w(s)w,w'(s)w,

wW(S)w,

sin[\P(s)—\Po]{
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cos[(s) — W ,]—w(s)w, sin[¥(s)—Y,]

Wy _ W(s),

w(s) w,

Yo cos[¥(s) =W, 1+ w,w'(s)sin[¥(s) - ¥, ]
w(s)

}cos[\P(s) -Y,]
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General Solution
» Defining

B(s) = W (s)
a(s) == ' =-WEHW(S)
u(s) =¥ (s)- ¥,

« [(S) is called the betatron function, £(S) is called the betatron phase, and a/(S) is
sometimes called a correlation function. Since W(S) is periodic, both #(S) and (S) are
also periodic with the same period.

« We note
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General Solution

pes) [cos 1(S) + o, Sin u(s)] VB B(s)sin u(s)
M(s) = O :
_[a(s)—a,]cos y(S;OJIrB[:; oo (s)]sin u(s) ,B,B(OS ) [cos 1(S) — a(S)sin u(s)]
* Note

Z(s)=M(s)z,
z(s) =a(s)z, +b(s)z,
z'(s)=a’(s)z, +b'(s)z, =c(s)z, +d(s)z, = c(s)=a'(s), d(s)=Db'(s)

ey (26) )
(3)‘(61'(3) b'(s)j

» Matrix for one period

COS 1+ Sin u Asin u
M(L) = 1+ a’

sinu(S) cosu—asin u
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Betatron Tunes

» Betatron phase advance over one period
s+L s+L s+L
1 1

U= _!\P’ds: !st: S %ds

» The number of oscillations per turn is called a betatron tune

e, 1 .1
Q,, =2 = <.[> ds
2 27° B,

» The betatron tunes are global parameters of the ring, i.e. the phase advance does not
depend on the starting point of the integration.

* In an uncoupled case, the fraction parts of the tunes can be readily obtained from the
diagonal 2x2 blocks of the transfer matrix:

_icos—l 1:r(l\/lf,xyz)
oy = 27
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Courant-Snyder Invariant

» The particle trajectory can be written as

2(s) = ﬁﬂ“) [608 41(s) + at, i 11(5)]2, + [ By B(S) i 1(5)2,

0

Z Z .
= S)| —2=C0S 1(S) +| —2=a, ++/ 5,24 |Sin w(S)

IB( |:\/FO H +[\/EO0( +. 0 J Y7 :l

= W B(S)[c0s 44, €08 4u(5) —sin 41, sin ()] = W B(S) cos[(s) + 4]

where
COSﬂoZZO\//ViV?O, Sinﬂoz_zoao/\/\%""\/ﬂozc’)
Z Z
W = 0 I o+ ﬁoz(;
&) e
:1+a§

2 ' 12 2 ' 12
Zy +20002,Zy + BoZy" =702y + 20,202y + B, 2,
0
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Courant-Snyder Invariant

» We can show that this quantity is conserved along the orbit

z =W B cos ¥

2 =W pcos* ¥

Z'=\/VV£1 p cosW —+/ B¥'sin ‘PJ:JVV(—acosT—lsin‘{J}

2p JB JB

= —\/%(acos\llmin ¥)

2% = V—v(a cos ¥ +sin ¥)’

zz' =-W cos¥ (acos¥ +sin V)

vz +2a12' + f1'°

= yW B cos’ W — 2aW cos W (« cos W +sin LI’)JF,B\%((%(:OS\P+sin ¥’

=W[(3f -2a° +a®)cos’ ¥ + (—2a + 2a) cos P sin ¥ +sin* ¥] =W
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Courant-Snyder Invariant

* An invariant of motion called Courant-Snyder invariant
2 ' 12 2 ' 12
W =yz°+2az22'+ B1'° =y 25 + 204242y + 3,2,

e This equation describes a skew ellipse in the phase space with an area of 7\W

x.max:'\"?F v A
X
lope=
/SUPE p

@

centroid

» For a periodic lattice, the particle lies on an ellipse determined by its initial conditions.
« Since the Twiss parameters are independent of initial conditions, there is a family of similar
inscribed ellipses corresponding to different values of W.
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Emittance

» A particle inside a certain ellipse has a phase space trajectory that stays inside the ellipse on
successive turns since it is also an inscribed non-intersecting ellipse.

« Similarly, any particle outside an ellipse stays outside.

* The phase space region contained within the largest ellipse than an accelerator is able to
transport is called the acceptance or admittance.

 Itis convenient to choose an ellipse
v2* +2a17'+ f1'* = ¢
containing a certain fraction of the beam, e.g. 39% (1o or rms), 90% (4.6c), or 95% (6c). The

ellipse will always contain the same fraction of the beam. This is another manifestation of
Liouville’s theorem.

» The area of the selected ellipse 7z¢is called the emittance. It is quoted with the factor of &
explicitly written out.
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Beam Envelope

* The trajectory of a particle is given by
2(s) = W B(s) cos(1(s) + 115)

* The transverse amplitude is

Zmax = W S(S)

* The rms envelope of the beam is

Zrms = Vgl’mSﬂ(S)

Thus, \/ﬂ(s) can be interpreted as the beam envelope function specifying the transverse
size of the beam as a function of S. Of course, the horizontal and vertical beam sizes are

determined by their respective betatron functions and emittances.
Ji

1.45
L 7. 40
| 7. 35
| 1 30
L 125
L .20
| 7,15
o rae
L ros
L ;.00
L 095
; jéaga

Ian' ] ) ’ . s () ) _ .
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Adiabatic Invariants

» Let us find an invariant of motion preserved during acceleration. The rate of energy change
during acceleration is slow on the time scale of betatron oscillations. An adiabatic
approximation applies, i.e. we can assume a slow approximately uniform acceleration of
particles with no heating of the beam in its rest frame.

» The adiabatic approximation allows use of the Poincaré-Cartan integral invariant:
I =<_‘5 pdg =~ const.

where P and ( are canonically conjugate coordinates and the integration is over one period of
the betatron oscillations.

* For horizontal motion:
g=X
ds dx

=ymX=ym——=(ymov)X = px’
P =7 M s (ymu)x"=p
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Adiabatic Invariants
» The horizontal invariant becomes
L, =p 4>x’dx = pre, = TMCBye, = TMCe,
where we found a quantity invariant under acceleration called the normalized emittance:

7e, = Pyre,

« Similarly, for the vertical motion:
l,=p cﬁ y'dy = pre, = wmcBye, = Tmce,

e, = Pyre,
- If the energy is adiabatically increased the area of the (X, px) ellipse remains constant while
the area of the (X, X') ellipse shrinks. This effect is called adiabatic damping.

N

i G
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Dispersion
» To account for momentum deviation, consider the horizontal equation of motion with the
inhomogeneous term: X"+ k(s)x =5/ p(s)
o=Aplp

e The solution may be written as
X(s) = C(s)X, + S(s)X, + D(s)0,
where C(S) and S(s) are solutions of the homogeneous equation and D(S) is a particular
solution of the inhomogeneous equation with & =1 having the initial conditions

C(0)=S'(0)=1 (cosine-line component)
C'(0)=S(0)=0 (sine-like component)
D(0)=D’'(0)=0
* The slope is given by
X'(s) =C'(s)x, +S'(s)x, + D'(s)0,
* The constant-energy trajectory equation in the matrix form is then
X C(s) S(s) D(s))(x,
X"|=|C'(s) S'(s) D'(s) || X
o 0 0 1 0,
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Dispersion

« Consider the eigenvalues of a 1-turn matrix. The characteristic equation is
P3><3 (ﬂ‘) — P2><2 (ﬁ’)(l_ﬂ‘) = O

The eigenvalues of the 2x2 matrix were obtained before
1 1 i i
ﬂl,z = Etr(M 2x2) T Etr(M 2><2) -1=e
A, =41

 Let us write the eigenvector corresponding to the 3 eigenvalue as
no\ (n
n'o|=\n"|o
o 1

« The periodic function 77 is called the dispersion function

) (C(s) S(s) D(s))[ 7
' |=|C'(s) S'(s) D'(s)| n
1 0 0 1 1

where the matrix elements are evaluated for the periodic cell starting at position S.

and
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Dispersion
« Solving for 77 and 7’

nj:(c(s) S(S)J(UJ{D(S)]
n') \C'(s) S'(s))\n") \D(s)
1-C(s) —S(s) \( 7 D(s)
-C'(s) 1—S'<s)j(n']:(D'(s>j
det(1—C(s) —S(s)j
—C'(s) 1-S'(s)
=2-tr(M,,,) =2(1—cos u)
) (1-C(s) —S(s) }( D(s) _ 1 1-S'(s)  S(s) [ D(s)
(77'] ) ( ~C'(s) 1—3'(s>](D'(s>j " 2(1-cos u)( C'(s) 1—C(s)j[D'(s>j

1 ([1—3'(5)]D(S) + S(S)D'(S)j

=1-C(S)-S'(s)+C(S)S'(s) - S(s)C(s)

1

~ 2(1—cos 1) | C'(5)D(s) +[L—C(s)]D'(s)

« The dispersion, nominally, is the closed orbit for a particle with © =1 in linear approximation.
Of course, the approximation and therefore the dispersion are only applicable when 0 << 1.
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Dispersion
« Note that the periodic dispersion function 77(S) = dX/dJ is not the same as the matrix
element D(S) =0x/00.

« X5(S)=7(s)o is the inhomogeneous part of the trajectory due to the dispersion.

» The total horizontal trajectory component consists of a part due to the betatron oscillations
and the part due to the dispersion:

X(8) = X;(8) + X;(8) = X, (8) +77(8)o
« Since the two components are independent, their contributions to the total beam size must be
added in quadrature:

0t (8) = T2 (8) +[11(5) 0, I = s B(5) +[1(5) T, T

using rms values of the involved quantities.
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Momentum Compaction

 The momentum compaction: relative change of circumference per unit change in relative
momentum offset

AL/L
o —AL/L
" Apl/p

e The circumference

Lo =L=¢ds, L,=L+AL=¢do

<j>da=<_|’>p5d9=g5(p+x5)d9:¢(1+%jds - L+<ﬁ%ds -

AL = CJS 25 ds _qgﬁ(5)5d _54)77(3)(15

 The momentum compaction then becomes

1(8)
_95 o(5)
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