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Matrix Example: Strong Focusing 

  Consider a doublet of thin quadrupoles separated by drift L 

 

  

 

There is net focusing given by this alternating gradient system 

A fundamental point of optics, and of accelerator strong focusing 
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Strong Focusing: Another View 

For this to be focusing, x’ must have opposite sign of x where 

these are coordinates of transformation of incoming paraxial ray 

 

Equal strength doublet is net focusing under condition that each 

lens’ focal length is greater than distance between them 
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More Math: Hill’s Equation 

  Let’s go back to our quadrupole equations of motion for 

What happens when we let the focusing K vary with s? 

Also assume K is periodic in s with some periodicity C 

 

 

This periodicity can be one revolution around the 

 accelerator or as small as one repeated 䇾cell䇿 

 of the layout 

  (Such as a FODO cell in the previous slide) 

The simple harmonic oscillator equation with a 

 periodically varying spring constant K(s) is 

 known as Hill’s Equation 

R → ∞
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(Bρ)

✓

∂By

∂x

◆

K(s+ C) = K(s)

Weak focusing

bending magnets

Drifts

“Cell”

x00 +K(s)x = 0 K(s) ≡
1

(Bρ)

✓

∂By

∂x

◆

(s)



5 T. Satogata / January 2015          USPAS Accelerator Physics 

Hill’s Equation Solution Ansatz 

  Solution is a quasi-periodic harmonic oscillator 

 

where w(s) is periodic in C but the phase Ψ(s) is not!! 

Substitute this educated guess (䇾ansatz䇿) to find 

 

 

 

 

 

For          and         to be independent of      , coefficients of the 

sin and cos terms must vanish identically   
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1
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Courant-Snyder Parameters 

  Notice that in both equations               so we can scale 

this out and define a new set of functions, Courant-

Snyder Parameters or Twiss Parameters  

w00
− (k2/w3) +Kw = 0 ⇒ w3(w00 +Kw) = k2

w
2
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2
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⇒
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Towards The Matrix Solution 

  What is the matrix for this Hill’s Equation solution? 

 

Take a derivative with respect to s to get  x0
≡

dx

ds

Now we can solve for A and B in terms of initial conditions  (x(0), x0(0))

x0 ≡ x(0) = A
p

β(0)

A =
x0

p

β(0)
B =

1
p

β(0)
[β(0)x0

0
+ α(0)x0]

x
0

0
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0(0) =
1

p

β(0)
[B − α(0)A]

And take advantage of the periodicity of        to find β,α x(C), x0(C)

x(s) = A
p

β(s) cosΨ(s) +B
p

β(s) sinΨ(s)

Ψ
0 =

1

β(s)
x
0(s) =

1
p

β(s)
{[B − α(s)A] cosΨ(s)− [A+ α(s)B] sinΨ(s)}
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Hill’s Equation Matrix Solution 

A =
x0

p

β(0)
B =

1
p

β(0)
[β(0)x0

0
+ α(0)x0]

We can write this down in a matrix form where                          

    is the betatron phase advance through one period C  

x(s) = A
p

β(s) cosΨ(s) +B
p

β(s) sinΨ(s)

x
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1
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0
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0

✓
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Interesting Observations 

      is independent of s: this is the betatron phase 

advance of this periodic system 

  Determinant of matrix M is still 1! 

  Looks like a rotation and some scaling 

  M can be written down in a beautiful and deep way 

 
    remember 
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Convenient Calculations 

  If we know the transport matrix M, we can find the lattice 

parameters (periodic in C) 

γ(0) ≡
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General Non-Periodic Transport Matrix 

  We can parameterize a general non-periodic transport matrix 

from s1 to s2 using lattice parameters and  

  This does not have a pretty form like the periodic matrix 

However both can be expressed as 

 

where the C and S terms are cosine-like and sine-like; the 

second row is the s-derivative of the first row! 

A common use of this matrix is the m12 term: 

M =
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∆x(s2) =
p
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∆Ψ = Ψ(s2)−Ψ(s1)
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(Deriving the Non-Periodic Transport Matrix) 

 

Calculate A, B in terms of initial conditions             and 

 

 

 

Substitute (A,B) and put into matrix form: 
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Review 

Hill0s equation x
00 +K(s)x = 0

betatron phase advance
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β(s) = β(s+ C)

✓
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✓

1 0
0 1

◆

J(s0) ≡
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= −I ⇒ M = e

J(s)µ

Ψ(s) =

Z
ds

β(s)

quasi− periodic ansatz solution x(s) = A
p

β(s) cos[Ψ(s) +Ψ0]
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Transport Matrix Stability Criteria 

  For long systems (rings) we want               stable as 

  If 2x2 M has eigenvectors             and eigenvalues             : 

  M is also unimodular (det M=1) so                   with complex 

  For        to remain bounded,    must be real 

  We can always transform M into diagonal form with the 
eigenvalues on the diagonal (since det M=1); this does not 

change the trace of the matrix 

  The stability requirement for these types of matrices is then 
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Lattice Optics: FODO Lives! 

  Most accelerator lattices are designed in modular ways 

  Design and operational clarity, separation of functions 

  One of the most common modules is a FODO module 

  Alternating focusing and defocusing “strong” quadrupoles 

  Spaces between are combinations of drifts and dipoles 

  Strong quadrupoles dominate the focusing 

  Periodicity is one FODO “cell” so we’ll investigate that 

motion 

  Horizontal beam size largest at centers of focusing quads 

  Vertical beam size largest at centers of defocusing quads 

cell 
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Periodic Example: FODO Cell Phase Advance 

  Select periodicity between centers of focusing quads 

  A natural periodicity if we want to calculate maximum β(s) 

       only has real solutions (stability) if  
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Periodic Example: FODO Cell Beta Max/Min 

  What is the maximum beta function,    ?  

  A natural periodicity if we want to calculate maximum β(s) 

  Follow a similar strategy reversing F/D quadrupoles to find 

the minimum β(s) within a FODO cell (center of D quad) 

M =

 

1−
L2

8f2

L2

4f
+ L

L2

16f3 −
L

4f2 1−
L2

8f2

!

β̂

L/2 L/2−2f −2ff

cell 

⇐ m12 = β sinµ

β̂ sinµ =
L2

4f
+ L = L

⇣

1 + sin
µ

2

⌘

β̂ =
L

sinµ

⇣

1 + sin
µ

2

⌘
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L

sinµ

⇣

1− sin
µ

2

⌘
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FODO Betatron Functions vs Phase Advance 

Generally want     /L small 
  Strong focusing 

  Smaller magnets 

  Less expensive accelerator 

[deg] 
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FODO Beta Function, Betatron Motion 

  This is a picture of a FODO lattice, showing contours of 

since the particle motion goes like 

  This also shows a particle oscillating through the lattice 

  Note that            provides an 䇾envelope䇿 for particle oscillations 

•             is sometimes called the envelope function for the lattice 

  Min beta is at defocusing quads, max beta is at focusing quads 

  6.5 periodic FODO cells per betatron oscillation 

±

p

β(s)

design trajectory 

Betatron motion 
trajectory 

p

β(s)
p

β(s)

(C&M Fig. 5.3)

⇒ µ = 360
◦/6.5 ≈ 55

◦

x(s) = A
p

β(s) cos[Ψ(s) +Ψ0]
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Example: RHIC FODO Lattice 

  1/6 of one of two RHIC synchrotron rings, injection lattice 

  FODO cell length is about L=30 m 

  Phase advance per FODO cell is about  

Horizontal Vertical 




low-beta insertion 

FODO 

low-beta insertion 

matching 

µ = 77
◦

= 1.344 rad

β̂ =
L

sinµ

⇣

1 + sin
µ

2

⌘

≈ 53 m

β̌ =
L

sinµ

⇣

1− sin
µ

2

⌘

≈ 8.7 m

quadrupoles 
dipoles 
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Propagating Lattice Parameters 

  If I have                   and I have the transport matrix       

that transports particles from            , how do I find the 

new lattice parameters                  ? 

 

(β,α, γ)(s1)

s1 → s2

M(s1, s2)

(β,α, γ)(s2)

M(s1, s1 + C) = I cosµ+ J sinµ =

✓

cosµ+ α(s1) sinµ β(s1) sinµ
−γ(s1) sinµ cosµ− α(s1) sinµ

◆

=

✓

m11 m12

m21 m22

◆





β(s2)
α(s2)
γ(s2)



 =





m2

11
−2m11m12 m2

12

−m11m21 m11m22 +m12m21 −m12m22

m2

21
−2m21m22 m2

22









β(s1)
α(s1)
γ(s1)





Homework  
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Propagating Lattice Parameters 

  If I have                   and I have the transport matrix       

that transports particles from            , how do I find the 

new lattice parameters                  ? 

 

The J(s) matrices at s1, s2 are related by 

 

 

Then expand, using det M=1 

 

 

 

 

 
 

 Quadratic: Lattice elements repeat themselves for 

(β,α, γ)(s1)

s1 → s2

M(s1, s2)

(β,α, γ)(s2)

M(s1, s1 + C) = I cosµ+ J sinµ =

✓

cosµ+ α(s1) sinµ β(s1) sinµ
−γ(s1) sinµ cosµ− α(s1) sinµ

◆

=

✓

m11 m12

m21 m22

◆

J(s2) = M(s1, s2)J(s1)M
−1(s1, s2)

J(s2) =

✓

α(s2) β(s2)
−γ(s2) −α(s2)

◆

=

✓

m11 m12

m21 m22

◆✓

α(s1) β(s1)
−γ(s1) −α(s1)

◆✓

m22 −m12

−m21 m11

◆





β(s2)
α(s2)
γ(s2)



 =





m2

11
−2m11m12 m2
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−m11m21 m11m22 +m12m21 −m12m22

m2

21
−2m21m22 m2
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







β(s1)
α(s1)
γ(s1)





M = ±I
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========== What’s the Ellipse? ========== 

  Area of an ellipse that envelops a given percentage of the 

beam particles in phase space is related to the emittance 

  We can express this in terms of our lattice functions! 
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Invariants and Ellipses 

  We assumed A was constant, an invariant of the motion 

A can be expressed in terms of initial coordinates to find 

 

This is known as the Courant-Snyder invariant: for all s, 

 

Similar to total energy of a simple harmonic oscillator 

      looks like an elliptical area in           phase space 

Our matrices look like scaled rotations (ellipses) in phase space 

on x(s) = A
p

β(s) cos[φ(s) + φ0]x

W ≡ A2
= γ0x

2

0
+ 2α0x0x

0

0
+ β0x

02

0

W (x, x0)

W = γ(s)x(s)2 + 2α(s)x(s)x0(s) + β(s)x0(s)2

s=s0 s=s0+C s=s0+2C s=s0+3C 



25 T. Satogata / January 2015          USPAS Accelerator Physics 

Emittance 

  The area of the ellipse inscribed by any given particle in 

phase space as it travels through our accelerator is called 

the emittance    : it is “constant” and given by 

Emittance is often quoted as the area of the ellipse that would 

contain a certain fraction of all (Gaussian) beam particles 

e.g. RMS emittance contains 39% of 2D beam particles 

Related to RMS beam size 

 

    RMS beam size depends on s!  

 

RMS emittance convention is fairly standard 

    for electron rings, with units of mm-mrad 

⌅ = ⇧W = ⇧[⇤(s)x(s)2 + 2α(s)x(s)x0(s) + ⇥(s)x0(s)2]

✏

σRMS

⇤RMS =
p

⇥β(s)
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Adiabatic Damping and Normalized Emittance 

  But we introduce electric fields when we accelerate 

  When we accelerate, invariant emittance is not invariant! 

  We are defining areas in            phase space 

  The definition of x doesn’t change as we accelerate 

  But                                    does since      changes! 

       scales with relativistic beta, gamma: 

  This has the effect of compressing x’ phase space by 

 

 

  Normalized emittance is the invariant in this case 

unnormalized emittance goes down as we accelerate 

This is called adiabatic damping, important in, e.g., linacs 

(x, x0)

x0
≡ dx/ds = px/p0 p0

p0 p0 ∝ βγ

βγ

✏N ≡ βγ✏



27 T. Satogata / January 2015          USPAS Accelerator Physics 

Phase Space Ellipse Geography 

  Now we can figure out some things from a phase space 

ellipse at a given s coordinate: 

x2 x1 

y1 

y2 

x1 =
p

W/γ(s) x2 =
p

Wβ(s)

y1 =
p

W/β(s) y2 =
p

Wγ(s)
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Rings and Tunes 

  A synchrotron is by definition a periodic focusing system 

  It is very likely made up of many smaller periodic regions too 

  We can write down a periodic one-turn matrix as before 

  We define tune as the total betatron phase advance in one 

revolution around a ring divided by the total angle 2π

M = I cosµ+ J sinµ I =

✓

1 0
0 1

◆

J(s0) ≡

✓

α(0) β(0)
−γ(0) −α(0)

◆

Qx,y =
∆µx,y

∆θ
=

1

2π

I
ds

βx,y(s)
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Tunes 

  There are horizontal and vertical tunes 

  turn by turn oscillation frequency 

  Tunes are a direct indication of the amount of focusing in 
an accelerator 

  Higher tune implies tighter focusing, lower 

  Tunes are a critical parameter for accelerator performance 

  Linear stability depends greatly on phase advance 

  Resonant instabilities can occur when 

  Often adjusted by changing groups of quadrupoles 

hβx,y(s)i

nQx +mQy = k

Mone turn = I cos(2πQ) + J sin(2πQ)
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6.2: Stability Diagrams 

  Designers often want or need to change the focusing of 

the two transverse planes in a FODO structure 

  What happens if the focusing/defocusing strengths differ? 

  Recalculate the M matrix and use dimensionless quantities 

     then take the trace for stability conditions to find 

L/2 L/2

cell 

−2fF fD −2fF

F ≡

L

2fF
D ≡

L

2fD

cosµ = 1 +D − F −

FD

2
sin

2
µ

2
=

FD

4
+

F −D

2
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Stability Diagrams II 

  For stability, we must have 

  Using                                 , stability limits are where 

  These translate to an a “necktie” stability diagram for FODO 

cosµ = 1 +D − F −

FD

2
sin

2
µ

2
=

FD

4
+

F −D

2

−1 < cosµ < 1

cosµ = 1− 2 sin
2
µ

2

sin
2
µ

2
= 0 sin

2
µ

2
= 1

stable

unstable

unstable
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6.3: Dispersion 

  There is one more important lattice parameter to discuss 

  Dispersion        is defined as the change in particle position 

with fractional momentum offset 

 

 

Dispersion originates from momentum dependence of dipole bends 

Equivalent to separation of optical wavelengths in prism 

 

δ ≡ ∆p/p0

η(s)

White light with 
many frequencies 

(momenta) 

enters, all with 
same initial 

trajectories (x,x’) 

Different positions 
due to different bend 

angles of different 

wavelengths 
(frequencies, 

momenta) of 
incoming light 

x(s) = betatron + ηx(s)δ ηx(s) ≡
dx

dδ
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(xkcd interlude) 

http://www.xkcd.org/964/ 

This is known in accelerator 
lattice design language as a 
䇾double bend achromat䇿 
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Dispersion 

  Add explicit momentum dependence to equation of motion again 

 

Assume our ansatz solution and use initial conditions to find 

 

 

 

 

 

 

 

The trajectory has two parts:  

 

D(s) = S(s)

Z
s

0

C(τ)

ρ(τ)
dτ − C(s)

Z
s

0

S(τ)

ρ(τ)
dτ

x(s) = C(s)x0 + S(s)x0

0
+D(s)δ0

x
0(s) = C

0(s)x0 + S
0(s)x0

0
+D

0(s)δ0





x(s)
x0(s)
δ(s)



 =





C(s) S(s) D(s)
C 0(s) S0(s) D0(s)
0 0 1









x0

x0

0

δ0





x(s) = betatron + ηx(s)δ ηx(s) ≡
dx

dδ

Particular solution of inhomogeneous 
differential equation with periodic ρ(s) 

x
00 +K(s)x =

δ

ρ(s)
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Dispersion Continued 

  Substituting and noting dispersion is periodic, 

 

  If we take            we can solve this in a clever way 

  Solving gives 





ηx(s)
η0
x
(s)

δ(s)



 =





C(s) S(s) D(s)
C 0(s) S0(s) D0(s)
0 0 1









ηx(s)
η0
x
(s)
δ0





ηx(s+ C) = ηx(s)

δ0 = 1
✓

ηx(s)
η
0

x
(s)

◆

=

✓

C(s) S(s)
C 0(s) S0(S)

◆✓

ηx(s)
η
0

x
(s)

◆

+

✓

D(s)
D0(s)

◆

= M

✓

ηx(s)
η
0

x
(s)

◆

+

✓

D(s)
D0(s)

◆

(I −M)

✓

ηx(s)
η
0

x
(s)

◆

=

✓

D(s)
D0(s)

◆

⇒

✓

ηx(s)
η
0

x
(s)

◆

= (I −M)−1

✓

D(s)
D0(s)

◆

achromat : D = D
0
= 0

η(s) =
[1− S0(s)]D(s) + S(s)D0(s)

2(1− cosµ)

η
0(s) =

[1− C(s)]D0(s) + C 0(s)D(s)

2(1− cosµ)
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FODO Cell Dispersion 

  A periodic lattice without dipoles has no intrinsic dispersion 

  Consider FODO with long dipoles and thin quadrupoles 

  Each dipole has total length            so each cell is of length 

  Assume a large accelerator with many FODO cells so   

cell 

ρθC/2 ρθC/2

ρθC/2

θC ⌧ 1

L = ρθC

Mdipole =





1
L

2
LθC

8

0 1
θC

2

0 0 1





MFODO = M
−2fMdipoleMfMdipoleM−2f

M
−2f =





1 0 0

−

1

2f
1 0

0 0 1



 Mf =





1 0 0
1

f
1 0

0 0 1





MFODO =

0

B

B

@

1− L2

8f2 L
⇣

1 + L
4f

⌘

L
2

⇣

1 + L
8f

⌘

θC

−

L
4f2

⇣

1− L
4f

⌘

1− L2

8f2

⇣

1− L
8f

−

L2

32f2

⌘

θC

0 0 1

1

C

C

A

−1/2f 1/f −1/2f
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FODO Cell Dispersion 

  Like    before, this choice of periodicity gives us 

  Changing periodicity to defocusing quad centers gives    

β̂ η̂x

η
0

x = 0 at max

η̌x

θc =
2π

25
(25 FODO cells)

η̂x =
LθC

4

"

1 +
1

2
sin

µ
2

sin
2 µ

2

#

η̌x =
LθC

4

"

1−
1

2
sin

µ
2

sin
2 µ

2

#

η
0

x
= 0 at min
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RHIC FODO Cell 

Horizontal 

Vertical 

Horizontal dispersion 

dipole dipole 

quadrupole 

half 
quadrupole 

half 
quadrupole 
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6.6: Dispersion Suppressor 

  The FODO dispersion solution is non-zero everywhere 

  But in straight sections we often want 

•  e.g. to keep beam small in wigglers/undulators in a light source 

  We can 䇾match䇿 between these two conditions with with a 
dispersion suppressor, a non-periodic set of magnets 

that transforms FODO             to zero. 

  Consider two FODO cells with different total bend angles 

•  Same quadrupole focusing to not disturb                much 

•  We want this to match                              to 

•               at ends to simplify periodic matrix   

ηx = η
0

x = 0

(ηx, η
0

x)

(ηx, η
0

x) = (η̂x, 0) (ηx, η
0

x) = (0, 0)

αx = 0

θ1/2 θ2/2θ1/2 θ2/2

θ1, θ2

1/f 1/f−1/f−1/2f −1/2f

βx, µx
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FODO Dispersion Suppressor 

D(s) =
L

2

✓

1 +
L

8f

◆✓

3−
L2

4f2

◆

θ1 + θ2

]

D0(s) =

✓

1−
L

8f
−

L2

32f2

◆✓

1−
L2

4f2

◆

θ1 + θ2

]

multiply matrices ⇒

η̂x =
4f2

L

✓

1 +
L

8f

◆

(θ1 + θ2)

θ = θ1 + θ2 two cells, one FODO bend angle → reduced bending

FODO peak 
dispersion, 

slope η’=0 

Zero dispersion 
area 

slope η’=0 





0
0
1



 =





cos 2µx βx sin 2µx D(s)

−

sin 2µx

βx

cos 2µx D0(s)

0 0 1









η̂x
0
1





θ1 =

 

1−
1

4 sin
2 µ

2

!

θ θ2 =

 

1

4 sin
2 µ

2

!

θ
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FODO Cell Dispersion and Suppressor 

Dispersion-free Insertion 
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Mismatched Dispersion 

  Someone in class asked what mismatched dispersion 

looks like 

  For example, this is what happens when the second 

dispersion suppressor is eliminated and the dipole-free 

FODO cells run right up against the FODO cells with dipoles 

Dispersion
-free 

Insertion 

Dispersion 
Mismatch – 

not periodic! 
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6.5: π/2 Insertion 

  Insertions and matching: modular accelerator design 

  FODO sections have very regular spacings of quads 

  Periodicity of quadrupoles => periodicity of focusing 

  But we need some long quadrupole-free sections 

  RF, injections, extraction, experiments, long instruments 

  Can we design a “module” that fits in a FODO lattice with 
a long straight section, and matches to FODO optics? 

  Yes: a minimal option is called the π/2 insertion 

  Matching lattice functions (β,α)x,y at locations A,B 
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π/2 Insertion 

M =

 

1−
l1l2
f2 2l1 + l2 −

l2
1
l2

f2

−

l2
f2 1−

l1l2
f2 −

l2
f

!

=

✓

cosµ+ α sinµ β sinµ

−γ sinµ cosµ− α sinµ

◆

M =

✓

1 l1

0 1

◆✓

1 0

−

1

f
1

◆✓

1 l2

0 1

◆✓

1 0
1

f
1

◆✓

1 l1

0 1

◆

cosµ = 1−
l1l2

f2
β sinµ =

✓

2−
l1l2

f2

◆

l1 + l2 γ sinµ =
l2

f2

m11 −m22 comparison : l2 = αf sinµ

Maximum l2 when sinµ = 1, µ =
π

2
, cosµ = 0
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π/2 Insertion 

Design constraints : f =
α

γ
l2 =

α2

γ
l1 = β − l2

Mπ/2 =

✓

α β

−γ −α

◆

= J (recall J2 = −I)

π/2 insertion 

5m FODO drifts 

l1=7.95m, l2=8.75m 
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Multiple π/2 Insertions 

M
2
= −I

M
4
= I



47 T. Satogata / January 2015          USPAS Accelerator Physics 

Multiple π/2 Insertions 

M
2
= −I

M
4
= I

Lattice elements repeat: see p. 22 
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Example: RHIC FODO Lattice Revisited 

  Note modular design, including low-beta insertions 

  Used for experimental collisions 

  Minimum beam size σ (with zero dispersion) 

•  maximize luminosity 

  Large s, beam size in “low beta quadrupoles” 

  Other facilities also have longitudinal bunch compressors 

•  Minimize longitudinal beam size (bunch length) for, e.g, FELs 

Horizontal Vertical 

low-beta insertion 

FODO 

low-beta insertion 

matching 

quadrupoles dipoles 

Missing dipole dispersion suppressor 


