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Matrix Example: Strong Focusing

» Consider a doublet of thin quadrupoles separated by drift L

. S T
Thin quadrupole R W, — — 7\

matrices \ \
1 0\ /1 L 1 0 1—f£F L

Maowlet = 1. 1 J{g 1)l )= _ 17" ¢ 14 L
fp fr fp fr frfD fp

1 1 1 L
_ - — C&M 5.1 with fr = —fp
Jaowrlet fpo fFr  fFRfD ( |
1 L
Ip=/r=J] = — T2
fdoublet f2

There is net focusing given by this alternating gradient system
A fundamental point of optics, and of accelerator strong focusing
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Strong Focusing: Another View

1 0\ /1 L 1 0 1 - L L
= (1605 D-(5 5% 1)
fp JF fp fr frfp fp

1 — L
incoming paraxial ray (;f,) = Mioublet (a(:)()) = ( 11 f I ) o
fp JF frfD

For this to be focusing, x’ must have opposite sign of x where
these are coordinates of transformation of incoming paraxial ray
fr=fp 2/<0 BUT z>0iff fr > L

Equal strength doublet is net focusing under condition that each
lens’ focal length is greater than distance between them
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More Math: Hill’s Equation

» Let’s go back to our quadrupole equations of motion for

R — o0 |

OB
"+Kr=0 y'-Ky=0 K= .
s K g ()

What happens when we let the focusing K vary with s?
Also assume K is periodic in s with some periodicity C

"+ K(s)r=0 K(s)= ! (aaiy)(s) K(s+C) = K(s)

(Bp)
This periodicity can be one revolution around the
accelerator or as small as one repeated “cell”
of the layout

(Such as a FODO cell in the previous slide)

The simple harmonic oscillator equation with a A
periodically varying spring constant K(s) is a®
known as Hill’s Equation

T
Weak focusing iy

bending magnets /. /
/
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Hill’s Equation Solution Ansatz

A K(s)p=0 K= (Blp) <a£y> (s)

» Solution is a quasi-periodic harmonic oscillator

x(s) = Aw(s) cos|¥(s) + Yy

where w(s) is periodic in C but the phase W¥(s) is not!!
Substitute this educated guess (“ansatz”) to find

' = Aw' cos[¥ + ¥g] — AwP’ sin[¥ + W]
"’ = A" — w¥'?) cos[¥ + ¥o] — AQw' YV + w¥")sin[¥ 4+ ]

v + K(s)x = —AQuw' V' +w¥")sin(¥ + ¥g) + A(w” — w¥'? 4+ Kw) cos(V + ¥() = 0

For w(s) and¥ (s) to be independent of W, coefficients of the
sin and cos terms must vanish identically
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Courant-Snyder Parameters

2ww' V' 4+ w? ¥ = (W V)Y =0 = UV =——
w(s)?

w' — (B /w)+ Kw=0 = w (v +Kw)=Ek

= Notice that in both equations w? o k so we can scale
this out and define a new set of functions, Courant-
Snyder Parameters or Twiss Parameters

w?(s) ) 1 o) — ds
P =7 Yo Ee 1Y) BE
a(s)z—% "(s) | = KB=~+a
(s) = 1 +a(s)? B(s),a(s),vy(s) are all periodic in C

B(s) U(s) is not periodic in C
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Towards The Matrix Solution

» What is the matrix for this Hill's Equation solution?

x(s) = A/ B(s)cos¥(s) + B+/S(s)sin ¥(s)
dx

Take a derivative with respect to s to get z’ =

ds
U = B(ls) 2’ (s) = 51(5) {[B—a(s)A]cosVU(s) — [A+ a(s)B]sinV¥(s)}
Now we can solve for A and B in terms of initial conditions (z(0), z'(0))
20 = 2(0) = AV/B0) ) =2 (0) = ;(0> B — a(0)A]

Lo B — 1

5(0) 5(0)
And take advantage of the periodicity of 3, a to find z(C),z'(C)

A=

B(0)z + (0)o]
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Hill’s Equation Matrix Solution

x(s) = A\/B(s)cos¥(s) + B+/S(s)sin ¥(s)
2 (5) = —— 1B — a(s)A] cos T(s) — [A + a(s)B] sin T(s)}

B(s)
A=

Io B— 1

v B(0) v 5(0)

2(C) = [cos ¥(C) + a(0) sin ¥(C)]zg + B(0) sin ¥(C)x,,
2 (C) = —~(0)sin ¥ (C)xg + [cos ¥(C) — a(0) sin ¥ (C)]x,

B(0)zo + (0)o]

We can write this down in a matrix form where ¢ = ¥ (C') — ¥(0)
is the betatron phase advance through one period C

~ [(cosp+ a(0)sin p B(0) sin p T
Vaore —~(0) sin cosp —a(0)sinp) \z')
So—l—C
[ = / ds phase advance per cell
S0 /8(8)
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Interesting Observations

T ~ (cosp+ a(0)sinp B(0) sin p T
') o B —~(0) sin p cospp — a(0)sinp ) \a')

s0tC g
= / phase advance per cell
S

o B(s)

= [ is independent of s: this is the betatron phase
advance of this periodic system

» Determinant of matrix M is still 1!
= Looks like a rotation and some scaling
= M can be written down in a beautiful and deep way

M = I cosp+ Jsin [:((1) (1)) J(So)E(a<O) 5(0))

JPP=-1 = M=eb"

L remember  z(s) = A\/B(s) cos[¥(s) + Pg] N
Jefferson Lab T. Satogata / January 2015 USPAS Accelerator Physics 9 @ g‘




Convenient Calculations

* |f we know the transport matrix M, we can find the lattice
parameters (periodic in C)

T ~ [(cosp+ a(0)sinp B(0) sin T
x’ 5ot C - —(0) sin p cospt —a(0)sinp ) \ &' .

1
betatron phase advance per cell cosuy = 5 Tr M

mi2
B(0) = B(C) = Sin 0
a(0) = a(C) = =5
_ 1+a%(0)
7(0) = 5(0)
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General Non-Periodic Transport Matrix

= We can parameterize a general non-periodic transport matrix
from s, to s, using lattice parameters and AV = U(sy) — ¥(s1)

M ( gﬁiii cos AW + afs1) sin AY] V/B(s1)B(s2) sin AW
S1—S2 — _ |a(s2)—a(s1)] cos AVH[1+a(s1)a(s2)]sin AW B(s1) B
V/B(s1)B(s2) Blsy) (COS AT — a(sz) sin AT

(C&M Eqn 5.52)
* This does not have a pretty form like the periodic matrlx

However both can be expressed as 5, _ (C S )
O 9
where the C and S terms are cosine-like and sine-like; the
second row is the s-derivative of the first row!
A common use of this matrix is the m,, term:

= /B(s1)B(s52) SIN(AW) 2’ (51) | on downstream positor
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(Deriving the Non-Periodic Transport Matrix)
x(s) = Aw(s) cos ¥(s) + Bw(s)sin ¥(s)

z'(s) = A (w’(S) cos U(s) — Siz}\(l;()s)) +B (w’(s) Sin W(s) + COS)EI;()S))

Calculate A, B in terms of initial conditions (x¢, z() and (wo, ¥o)
W
A= (w6 sin Wg + cos O) xo — (wp sin \Ifo)xg
Wo

Sin \Ijo

B=— (w6 cos Uy — - ) zo + (wp cos ¥o)xg
0
Substitute (A,B) and put into matrix form: (w(s)) _ (mu mm) (-1’0)

' (s) m21  Maz) \ T
L) o
mi1(s) = ” cos AV — w(s)wy sin AW AV = U(s) — Uy
0
mi2(s) = w(s)wgy sin AW w(s) = +/B(s)

1+ w(s)wow'(s)wy sin — w — w(s) COS
moq (S) w<8>w0 AW [w(s) wo ] AWV

Moz (s) = wuéZ) cos AW + wow' sin AW
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Review
Hill's equation z"" 4+ K(s)z =0
quasi — periodic ansatz solution x(s) = A+/B(s)cos|¥(s) + Vg

1+ a(s)?
B(s)=B(s+C) ~(s) = B?s()S)
_ 1, ds
() =58 w= [ &
(:1:) B (Cosu+oz(0)sinu B(0) sin p ) (x)
x’ e B —(0) sin p cosp —a(0)sinp ) \ ' .
betatron phase advance = / e % Tr M = 2cos

M=Tcosp+Jsing I= ((1) (D I(50) = (—av(?(% 6(0())))

2 _ _ — /()

2
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= Forlong systems (rings) we want M" (

.Jeffergon Lab

Transport Matrix Stability Criteria

i
x?) stable as n —
0

If 2x2 M has eigenvectors (7, V;)and eigenvalues (), \,):
M" (i?) = ANIVA + B3V,
0
M is also unimodular (det M=1) so ), , = ¢*i* with complex
For \» to remain bounded, ;, must be real

We can always transform M into diagonal form with the
eigenvalues on the diagonal (since det M=1); this does not
change the trace of the matrix

e 4 e M =2cospu=Tr M
The stability requirement for these types of matrices is then

1
{4 real = —1§§TrM§1

@&
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Lattice Optics: FODO Lives!

cell

» Most accelerator lattices are designed in modular ways
= Design and operational clarity, separation of functions

* One of the most common modules is a FODO module
= Alternating focusing and defocusing “strong” quadrupoles
= Spaces between are combinations of drifts and dipoles
= Strong quadrupoles dominate the focusing

= Periodicity is one FODO “cell” so we’ll investigate that
motion

» Horizontal beam size largest at centers of focusing quads
Vertical beam size largest at centers of defocusing quads

)
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Periodic Example: FODO Cell Phase Advance

cell

| \l‘ \ f \ \
| |
| | | ‘ [

/
P

Cof 1 f Lj2 -2

» Select periodicity between centers of focusing quads
= A natural periodicity if we want to calculate maximum {(s)

D6 DE 6 D0 Y

1—8’3—22 f;—2+L 12
M=1 ;- fL d 72 TrM =2cospu=2——
163 4f2 1‘@

L2
1——:Cos,uzl—QSiHQg —~  sin
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Periodic Example: FODO Cell Beta Max/Min
V) [

l
~2f L2 f Lj2 —2f o
= What is the maximum beta function, 3 ?
= A natural periodicity if we want to calculate maximum {(s)

L _ L | _- L%

163 — if? Y2
; L’ p 5 AL z
sinp = 5+ L=1L(1+sin’) = (1+sin—)
psin 4f 2 b sin 2

» Follow a similar strategy reversing F/D quadrupoles to find
the minimum p(s) within a FODO cell (center of D quad)

< L
b= — (1 — sin H)
sin 4 2
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FODO Betatron Functions vs Phase Advance

12 ' ' ' l l T T I
beta_max/L ——
beta_min/L ———
10
E
_l y.
X 8r P
£ g
EI S
g £
o
3 6 g
z : 5
£ Generally want S/L small o
o : Strong focusing *
ps Smaller magnets
Less expensive accelerator
2 B —
: I ' | 1 1 k |

20 40 60 80 100 120 140 160

Phase advance/cell [deg]
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FODO Beta Function, Betatron Motion
Betatron motion

R o
trajectory /‘\ /
N
D .
> D design trajectory

F
DFDF\ gD /FDFDFDF\FD (C&M Fig. 5.3)
]

* This is a picture of a FODO lattice, showing contours ofi\/
since the particle motion goes like z(s) = A/ 5(s) cos[¥(s) + \po]

= This also shows a particle oscillating through the Iattlce

= Note that \/5(s) provides an “envelope” for particle oscillations
- v/B(s) is sometimes called the envelope function for the lattice

= Min beta is at defocusing quads, max beta is at focusing quads
= 6.5 periodic FODO cells per betatron oscillation

= =360°/6.5~ 55°
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150

! . . . . J ]
- i low-beta insertion low-beta insertion;; 3
125 — 1“, \ i
E, - 3
c 100 (] : 3
2 )Y Horizontal | i Vertical | matching | | 3
s 75p@l v __ "ttt DB =
i - ? Ilt I‘. FODO &lﬁ Jf ‘I -
) — v noof -
== — ol . N s a oyt ! ]
@:(:' 50 E ) : rji ;‘1“ 1" rl &1 ’:,t:. ! ,( II.'-:] I' |’l .(l lI I| '. |] | H ; E
25: \» ) r‘, , | ‘Jl'., A h lf",f VA AR AR A A :
1r lU' I‘.Jr ]V" 'J "J’ \'." 1.," "'1" l‘ll l'.; I"J’ M o

0 I I O I Y I | N I | I N N T N | I | N I | I N T I I I | I | N el | I 11 17

0 100 200 300 400 500 600

S coordinate [m)]

= 1/6 of one of two RHIC synchrotron rings, injection lattice
= FODO cell length is about L=30 m
= Phase advance per FODO cell is about 1 = 77° = 1.344 rad

A L

b= — (1—|—Sinﬁ)z53m

sin [ 2

L . ©
(1 —Smg) ~ 8.7 m

B =

sin (4
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Propagating Lattice Parameters

= If | have (8,a,7)(s1) and | have the transport matrix M (s, s)
that transports particles from s; — s, how do | find the
new lattice parameters (5, o, v)(s2)?

M(s1,81+C) =1Tcosp+ Jsinpy= COSLL—FOé(S%)SlIl/UL ﬁ(sl)sm,u. _ (mu mao
_V(Sl)snl:u COS,U—OZ(Sl)Sln,u mMo1 Moo

Homework ©

m3, —2my1mi2 mis B(s1)
= | —mi1m21 Mi11Ma2 + Mi12Ma1 —1M12M22 a(s1)

m21 —2m21m22 m22
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Propagating Lattice Parameters

= If | have (8,a,7)(s1) and | have the transport matrix M (s, s)
that transports particles from s; — s, how do | find the
new lattice parameters (5, o, v)(s2)?

M(s1,81+C)=1TIcosp+ Jsinpy = (COS:LL + a(s1) sin p B(s1) sin u ) _ (m11 m12)

—(s1) sin i cos it — a(s1) sin Moy Moo
The J(s) matrices at s,, s, are related by =N
_ [ 1
J(s2) = M(s1,82)J (s1)M " H(s1,82) (1. )
. ;\\/\\\ S ;/,'/ ) /')
Then expand, using det M=1 AN

o= () S )= (e (<) Sy ()

B(s2) mi, —2my1mg mis B(s1)
&(82) = | —m11m21 Mi11Ma22 + M12M21 —M121M22 04(81)
v(s2) ; 5 v(s1)

3 Quadratic: Lattice elements repeat themselves for 1\/[ i A
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02 + - 02 -
01 - 01 2
T - . =) =
© © e
E , 2, E 0 E O
< %o % ° . -
01 F - 01 } 2
02 - 02 4
-4 -2 0 2 4 4 2 0 2 4 4 -2 0 2 4
X [mm], step=0 y [mm], step=0 x [mm], step=0

1 1 1 1 1
0 20 40 60 80 100 120
s coord [m]

* Area of an ellipse that envelops a given percentage of the
beam particles in phase space is related to the emittance

We can express this in terms of our lattice functions!
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Invariants and Ellipses

= A+/B(s) cos|p(s) + ¢o]

= We assumed A was constant, an invariant of the motion
A can be expressed in terms of initial coordinates to find
W = A% = yox3 + 209z07h + Boxl
This is known as the Courant-Snyder invariant: for all s,
W = 7(s)z(s)” + 2a(s)z(s)a’(s) + B(s)’(s)?
Similar to total energy of a simple harmonic oscillator
W looks like an elliptical area in (z, z") phase space
Our matrices look like scaled rotations (elllpses) In phase space

0.2 s=sg 1T s= sO+C i s= so+2C i s= so+3C

x' [mrad)]

1 1 1 L L 1 1 L L L 1 1 L L L 1 1 L L L
-4 -2 0 2 4 -4 -2 0 2 B -4 -2 0 2 B -4 -2 0 2 B
x [mm]), step=14 x [mm], step=14 x [mm], step=14 x [mm], step=14
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Emittance

*» The area of the ellipse inscribed by any given particle in
phase space as it travels through our accelerator is called
the emittance €: it is “constant” and given by

e =W = 7[y(s)x(5)? + 2a(s)x(s)x’(s) + B(s)x’(5)?]

Emittance is often quoted as the area of the ellipse that would
contain a certain fraction of all (Gaussian) beam particles

e.g. RMS emittance contains 39% of 2D beam particles
Related to RMS beam size g,y q

orMs = V/ €6(s) o |
RMS beam size depends on s!

RMS emittance convention is fairly standard  °*[ |
for electron rings, with units of mm-mrad i, stop=14
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Adiabatic Damping and Normalized Emittance

= But we introduce electric fields when we accelerate
= \When we accelerate, invariant emittance is not invariant!
We are defining areas in (z, SL") phase space
The definition of x doesn’t change as we accelerate
= But 2’ = dx/ds = p,/po does since po changes!
= po scales with relativistic beta, gamma: pg o< 87y
= This has the effect of compressing x’ phase space by 3~y

02 -

01

0k

x' [mrad]

=)
¥

[mred

o o o
M Do =2 W
T

01

02 ’ E ' . . . . . 4 .
-4 -2 o] 2 4 x [mm], step=14

x [mm), step=14

= Normalized emittance is the invariant in this case| €N = 576
unnormalized emittance goes down as we accelerate
This is called adiabatic damping, important in, e.g., linacs
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Phase Space Ellipse Geography

02

01

0

x' [mrad]

01 k-

02 +

x1 x2
1 | L
-4 -2 0 2

x [mm], step=14

-

4

* Now we can figure out some things from a phase space
ellipse at a given s coordinate:

r1 =V W/(s) To =

Y1 = \/W/B(S)

)
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Rings and Tunes

» A synchrotron is by definition a periodic focusing system
= [tis very likely made up of many smaller periodic regions too
= We can write down a periodic one-turn matrix as before

0 1 —7(0)  —a(0)

M = Icos i+ Jsin 12(1 0) J(SO)E(a«n 6(0)>

= We define tune as the total betatron phase advance in one
revolution around a ring divided by the total angle 27
Apg o 1 ds
Qa},y p— p—
A6 21 | Bzy(s)

Horizontal Betatron Oscillation
with tune: Qy, = 6.3, with tune: Qv =7.5,

. i.e., 6.3 oscillations per turn. i.e., 7.5 oscillations per turn. :
@
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Tunes

= There are horizontal and vertical tunes
= turn by turn oscillation frequency

= Tunes are a direct indication of the amount of focusing in
an accelerator

= Higher tune implies tighter focusing, lower (3, ,(s))

= Tunes are a critical parameter for accelerator performance
= Linear stability depends greatly on phase advance
= Resonant instabilities can occur when n@), + m@), = k
= Often adjusted by changing groups of quadrupoles

Mone turn = I cos(27Q) + J sin(27Q)
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6.2: Stability Diagrams

= Designers often want or need to change the focusing of
the two transverse planes in a FODO structure

= What happens if the focusing/defocusing strengths differ?

cell

-,l‘ f :“
| | |

‘ [ [
I “ | I ‘ “\ \

2fp )2 s L/2 Y

= Recalculate the M matrix and use dimensionless quantities

L L
- 2fF - 2fp
then take the trace for stability conditions to find
FD w FD F-—D
=1+D—-F—-— in? &= =
COS [ + 5 Sin 5 1 + 5
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Stability Diagrams I

FD FD F-D
cospy=1+D — F_T Sm2g 1 + 5

= For stability, we must have —1 <cospu <1
= Using cosp =1—2sin* = P , stability limits are where

2 MU

sin §:O SmQ’u 1

= These translate to an a “necktie” stability diagram for FODO

2
unstable
stable
D L
unstable
O F 2

Figure. 6.1 Stability or “necktie” diagram for an alternate focusing lattice. The shaded area is the

] region of stability. @ JSA
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6.3: Dispersion

= There is one more important lattice parameter to discuss

= Dispersion(s) is defined as the change in particle position
with fractional momentum offset 6 = Ap/pg

_dx

—ds

Dispersion originates from momentum dependence of dipole bends

Equivalent to separation of optical wavelengths in prism

z(s) = betatron + 1,(s)6  nz(s)

Different positions
due to different bend
angles of different

White light with
many frequencies

(momenta) | °
enters, all with wave eng.t S
same initial (frequencies,

momenta) of
incoming light

trajectories (x,x’)
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(xked interlude)

http://www.xkcd.org/964/

This is known in accelerator
lattice design language as a
“double bend achromat”

D = JSA
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Dispersion

= Add explicit momentum dependence to equation of motion again

" + K(s)r = %

Assume our ansatz solution and use initial conditions to find

#ls) = Cle)zo + Slsjro + Dis)do D(s) = S(s) /8 Cr) C(s) /S S(1) .
2'(s) = C'(s)z0 + 5'(s)xg + D'(s)d0 o A7) o A7)

Particular solution of inhomogeneous
differential equation with periodic p(s)

z(s) C(s) S(s) D(s) To
'(s) | = | C'(s) S'(s) D'(s) | |z
5(8) 0 0 1 50

The trajectory has two parts:

x(s) = betatron + 1, (s)6  nz(s) = Z—Zg
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Dispersion Continued

= Substituting and noting dispersion is periodic, 1:(s + C) = 1,(s)

M ($) C(s) S(s) D(s)\ [n(s) |
n.(s) | = | C'(s) S'(s) D'(s)| |7n.(s)| achromat:D =D"=0

5(8) 0 0 1 50
= |f we take g = 1 we can solve this in a clever way
ne(s)\ _ (C(s)  S5(s)\ (na(s) D(s)\ _ 1 (M=(5) D(s)
(n;<s)) B <C’(8> S’(S)> (n;(s) i (D’(s)> =M (n;(s)) (D’(s)>
B na(s)) _ [ D(s) n($)\ _ 7 _ -1 [ P(s)
- ()=o) = i) =e-07 (o)
= Solving gives
n(s) = [1—5(s)|D(s) + S(s)D'(s)
2(1 — cos )
7 (s) = 1 —C(s)|D'(s) + C'(s)D(s)
2(1 — cos )
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FODO Cell Dispersion

cell

-1/2f Uf 172
» A periodic lattice without dipoles has no intrinsic dispersion
= Consider FODO with long dipoles and thin quadrupoles

= Each dipole has total length pfc/2 so each cell is of length L = pf¢
= Assume a large accelerator with many FODO cells so 6o < 1

1 0 0 1 £ L 0 0
M_of = —% L 0 Mgipole = |0 1 970 M; = I 0
0 01 00 1 0 1

Mropo = M_of Maipole M f Maipole M —2

O |R =

L? L L L
& L(1+&) H(1+&) e
- 2 2
Mropo = _ﬁ(l—%) 1—8L? (1—%—35?)90
0 0 1
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FODO Cell Dispersion

= Like 3 before, this choice of periodicity gives us 7,
. Lbc 1+ %Sin%_
e =y sin? 5
= Changing periodiciti to defocusing quad centers gives 17,

IO |1— Lsink

1., = 0 at max

. 2 2 n,. = 0 at min
7733 - . 2 s
4 sin” &
12 | - | | - | | |
eta_max/L
- 1 eta_min/L ——
>
4]
= 0.8 .
El
® 06} _
=
I=
E 04r 9 -
o 0. = — (25 FODO cells)
o - S 25 |
0 | 1 1 | | 1 1
40 60 80 100 120 140 160

Phase advance/cell [deg]
T. Satogata / January 2015 USPAS Accelerator Physics 37




RHIC FODO Cell

v, = 02238 v, = 02372

75 C v T v v T v T v { commey ) T T v T v T A B UP v T v T A\ T v
F X —
TO0P\ Y —— - .
> /’ \
6.5 ) /
Horizontal ™
8.0 - P
& 2
S 65F e
A ’ FTTTTTTT
L / 1
£ 5.0F ’ o CETEeAl 1
L8 - 2/ 3
45} Mg 1
[ ’ 3
4.0 : 4 ]
. = 7’ 4
half : - 1 half
k- ~ —
quadrupole 35 :I// dipole ~_dipole N ,iquadrupole
r S
30 = 3 2 $ + 5 3 $ - + I, — 5 i + i + i + 3 L 4 L |= 3 4 } 19
11.8
1.7
quadrupole e
1185
¢ 4 1.45
{ l11aF
i TN 17L27
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6.6: Dispersion Suppressor

» The FODO dispersion solution is non-zero everywhere

= But in straight sections we often want 7, =71, =0
* e.g. to keep beam small in wigglers/undulators in a light source

= We can “match” between these two conditions with with a
dispersion suppressor, a non-periodic set of magnets
that transforms FODO (7., 11},) to zero.

 — %7 7/ ‘
) ‘A )\ ‘n
~1j2f 02 ayp 02 agp 9202y 0202 qpap
= Consider two FODO cells with different total bend angles 61, 0
« Same quadrupole focusing to not disturb 5z, ftz much

- We want this to match (72, 1,) = (72, 0) to (1., 7,,) = (0,0)
« o, = 0 at ends to simplify periodic matrix

D
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FODO Dispersion Suppressor

Zero dispersion 0 COS 22’% Bz sin 2/4a D<S) Na FODO peak
area 0|l =1 - Smﬁ—“f”’ cos2u,  D'(s) 0 dispersion,
slope 1’ =0 1 0 0 1 1 slope ' =0

-5 ) (o £
(1) [ £

2
= (14 57) @+ 0

1 1
0, =(1— 7, 0o = 7,
! ( 4 sin? ) 2 (4 sin? )

0 =61 + 65 twocells, one FODO bend angle — reduced bending

multiply matrices =

N=
N=
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FODO Cell Dispersion and Suppressor
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beta function

Mismatched Dispersion

» Someone in class asked what mismatched dispersion
looks like
= For example, this is what happens when the second

dispersion suppressor is eliminated and the dipole-free
FODO cells run right up against the FODO cells with dipoles

| |

Dispersion
-free
Insertion

betax
betay
_ _ dispx*10
Dispersion
Mismatch —
not periodic!

R

20

40 60
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6.5: n/2 Insertion

* Insertions and matching: modular accelerator design
= FODO sections have very regular spacings of quads

= Periodicity of quadrupoles => periodicity of focusing
= But we need some long quadrupole-free sections

» RF, injections, extraction, experiments, long instruments

= Can we design a “module” that fits in a FODO lattice with
a long straight section, and matches to FODO optics?

= Yes: a minimal option is called the 7/2 insertion
= Matching lattice functions (8,a),, at locations A,B

D JSA
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nt/2 Insertion

-
\ \
L / \ L, \\/ L
[_=X

(666

2
M — l—l}—lf 2Z1+12—% _(Cosu+ozsinu B sin )
_% _%_? —ysin i COS 4 — avsin L
l1l2 : ( 5152) : I
cosp=1——7 Psinu=(2——7% |11+l ~vsinpy=—
f? f? f?
m11 — Moo comparison : [y = af sinu

Maximum [s when sinpy =1, p = g, cos =0
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nt/2 Insertion

. . o o’
Design constraints : f=— b= — [ =08—15
Y
Qo
M, /9 = ( g ) = (recall J* = —1)
45 T T 7t/2 insertion T T T
gg 2 0D drif betax
- 5m FODO drifts
30 L betay

1,=7.95m, 1,=8.75m

beta function
N
(@) ]

| S S I (OB [ N |

R & JSA
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Multiple /2 Insertions ‘

C
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=
©
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o 30 | =
5 25t -
§ 15 OO XX ©
2 15 -
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Multiple /2 Insertions

45 Lattice elements repeat: see p. 22
| | 1 I | l [ 1 |

beta function

5 | | | l | | ] | |
0 10 20 30 40 50 60 70 80 90 100
Zg | | | |
[s) betay
o 30 | =
5 25t -
© 20 o
g 15 POON ONN !
10 -
5 | | | |
0 20 40 60 80 100 120 140 160
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Example: RHIC FODO Lattice Revisited

quadrupoles ——> | H ’HT/ dipoles
¢ N ) , ) low-beta insertion ]
125 it Missing dipole dispersion suppressor \ =
E =Y low-beta insertion Al
c 100F (| <€— _ 3
2 )Y Horizontal | i Vertical | matching | | 3
s 75pp@l v __ "ttt -
— S I FODO A
Ln/ __ ]l. |':- n |l.:| Jr __
@;.-' ‘ 50 E lll IJ ":. fj E'| |;\] n’j": 3 -’h| Jﬁ‘l ;:.‘:- ,:Iri js‘ll lll\:\ |:.:;\ n"l’l‘g If: [} -'II:'| |rl’I "III::. ’I : .'!f. E
v M 1*1'r ';JI I‘Jr ]V" 'J "Jj \'.'l 1.," "v'f ';1' ".; I"f \ o

0 I I O I Y I | N I | I | N N I | I | N I | I N T I I I | I | N el | I 11 17

0 100 200 300 400 500 600

S coordinate [m]
= Note modular design, including low-beta insertions
» Used for experimental collisions
= Minimum beam size o (with zero dispersion)
* maximize luminosity
» Large s, beam size in “low beta quadrupoles”

= Other facilities also have longitudinal bunch compressors
« Minimize longitudinal beam size (bunch length) for, e.g, FELs
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