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Matrix Example: Strong Focusing 

  Consider a doublet of thin quadrupoles separated by drift L 

 

  

 

There is net focusing given by this alternating gradient system 

A fundamental point of optics, and of accelerator strong focusing 
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Strong Focusing: Another View 

For this to be focusing, x’ must have opposite sign of x where 

these are coordinates of transformation of incoming paraxial ray 

 

Equal strength doublet is net focusing under condition that each 

lens’ focal length is greater than distance between them 
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More Math: Hill’s Equation 

  Let’s go back to our quadrupole equations of motion for 

What happens when we let the focusing K vary with s? 

Also assume K is periodic in s with some periodicity C 

 

 

This periodicity can be one revolution around the 

 accelerator or as small as one repeated 䇾cell䇿 

 of the layout 

  (Such as a FODO cell in the previous slide) 

The simple harmonic oscillator equation with a 

 periodically varying spring constant K(s) is 

 known as Hill’s Equation 

R → ∞
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Hill’s Equation Solution Ansatz 

  Solution is a quasi-periodic harmonic oscillator 

 

where w(s) is periodic in C but the phase Ψ(s) is not!! 

Substitute this educated guess (䇾ansatz䇿) to find 

 

 

 

 

 

For          and         to be independent of      , coefficients of the 

sin and cos terms must vanish identically   
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Courant-Snyder Parameters 

  Notice that in both equations               so we can scale 

this out and define a new set of functions, Courant-

Snyder Parameters or Twiss Parameters  

w00
− (k2/w3) +Kw = 0 ⇒ w3(w00 +Kw) = k2

w
2
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2
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⇒
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Towards The Matrix Solution 

  What is the matrix for this Hill’s Equation solution? 

 

Take a derivative with respect to s to get  x0
≡

dx

ds

Now we can solve for A and B in terms of initial conditions  (x(0), x0(0))

x0 ≡ x(0) = A
p

β(0)

A =
x0

p

β(0)
B =

1
p
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0
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x
0

0
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1

p
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[B − α(0)A]

And take advantage of the periodicity of        to find β,α x(C), x0(C)

x(s) = A
p

β(s) cosΨ(s) +B
p

β(s) sinΨ(s)

Ψ
0 =

1

β(s)
x
0(s) =

1
p

β(s)
{[B − α(s)A] cosΨ(s)− [A+ α(s)B] sinΨ(s)}
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Hill’s Equation Matrix Solution 

A =
x0

p

β(0)
B =

1
p

β(0)
[β(0)x0

0
+ α(0)x0]

We can write this down in a matrix form where                          

    is the betatron phase advance through one period C  

x(s) = A
p
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p
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x
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0
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Interesting Observations 

      is independent of s: this is the betatron phase 

advance of this periodic system 

  Determinant of matrix M is still 1! 

  Looks like a rotation and some scaling 

  M can be written down in a beautiful and deep way 
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✓
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Convenient Calculations 

  If we know the transport matrix M, we can find the lattice 

parameters (periodic in C) 

γ(0) ≡
1 + α2(0)

β(0)

✓

x

x
0

◆

s0+C

=

✓

cosµ+ α(0) sinµ β(0) sinµ
−γ(0) sinµ cosµ− α(0) sinµ

◆✓

x

x
0

◆

s0

β(0) = β(C) =
m12

sinµ

α(0) = α(C) =
m11 − cosµ

sinµ

betatron phase advance per cell cosµ =
1

2
TrM



11 T. Satogata / January 2015          USPAS Accelerator Physics 

General Non-Periodic Transport Matrix 

  We can parameterize a general non-periodic transport matrix 

from s1 to s2 using lattice parameters and  

  This does not have a pretty form like the periodic matrix 

However both can be expressed as 

 

where the C and S terms are cosine-like and sine-like; the 

second row is the s-derivative of the first row! 

A common use of this matrix is the m12 term: 

M =

✓
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(Deriving the Non-Periodic Transport Matrix) 

 

Calculate A, B in terms of initial conditions             and 

 

 

 

Substitute (A,B) and put into matrix form: 
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Review 

Hill0s equation x
00 +K(s)x = 0

betatron phase advance
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β(s) = β(s+ C)

✓

x

x
0

◆

s0+C

=

✓

cosµ+ α(0) sinµ β(0) sinµ
−γ(0) sinµ cosµ− α(0) sinµ

◆✓

x

x
0

◆

s0

µ =

Z s0+C

s0

ds

β(s)
TrM = 2 cosµ

M = I cosµ+ J sinµ I =

✓

1 0
0 1

◆

J(s0) ≡
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Transport Matrix Stability Criteria 

  For long systems (rings) we want               stable as 

  If 2x2 M has eigenvectors             and eigenvalues             : 

  M is also unimodular (det M=1) so                   with complex 

  For        to remain bounded,    must be real 

  We can always transform M into diagonal form with the 
eigenvalues on the diagonal (since det M=1); this does not 

change the trace of the matrix 

  The stability requirement for these types of matrices is then 
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Lattice Optics: FODO Lives! 

  Most accelerator lattices are designed in modular ways 

  Design and operational clarity, separation of functions 

  One of the most common modules is a FODO module 

  Alternating focusing and defocusing “strong” quadrupoles 

  Spaces between are combinations of drifts and dipoles 

  Strong quadrupoles dominate the focusing 

  Periodicity is one FODO “cell” so we’ll investigate that 

motion 

  Horizontal beam size largest at centers of focusing quads 

  Vertical beam size largest at centers of defocusing quads 

cell 
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Periodic Example: FODO Cell Phase Advance 

  Select periodicity between centers of focusing quads 

  A natural periodicity if we want to calculate maximum β(s) 

       only has real solutions (stability) if  
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Periodic Example: FODO Cell Beta Max/Min 

  What is the maximum beta function,    ?  

  A natural periodicity if we want to calculate maximum β(s) 

  Follow a similar strategy reversing F/D quadrupoles to find 

the minimum β(s) within a FODO cell (center of D quad) 

M =

 

1−
L2

8f2

L2

4f
+ L

L2

16f3 −
L

4f2 1−
L2

8f2

!

β̂

L/2 L/2−2f −2ff
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⇐ m12 = β sinµ

β̂ sinµ =
L2

4f
+ L = L

⇣

1 + sin
µ

2

⌘

β̂ =
L

sinµ

⇣

1 + sin
µ

2

⌘

β̌ =
L

sinµ

⇣

1− sin
µ

2

⌘
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FODO Betatron Functions vs Phase Advance 

Generally want     /L small 
  Strong focusing 

  Smaller magnets 

  Less expensive accelerator 

[deg] 
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H
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e
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FODO Beta Function, Betatron Motion 

  This is a picture of a FODO lattice, showing contours of 

since the particle motion goes like 

  This also shows a particle oscillating through the lattice 

  Note that            provides an 䇾envelope䇿 for particle oscillations 

•             is sometimes called the envelope function for the lattice 

  Min beta is at defocusing quads, max beta is at focusing quads 

  6.5 periodic FODO cells per betatron oscillation 

±

p

β(s)

design trajectory 

Betatron motion 
trajectory 

p

β(s)
p

β(s)

(C&M Fig. 5.3)

⇒ µ = 360
◦/6.5 ≈ 55

◦

x(s) = A
p

β(s) cos[Ψ(s) +Ψ0]
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Example: RHIC FODO Lattice 

  1/6 of one of two RHIC synchrotron rings, injection lattice 

  FODO cell length is about L=30 m 

  Phase advance per FODO cell is about  

Horizontal Vertical 



low-beta insertion 

FODO 

low-beta insertion 

matching 

µ = 77
◦

= 1.344 rad

β̂ =
L

sinµ

⇣

1 + sin
µ

2

⌘

≈ 53 m

β̌ =
L

sinµ

⇣

1− sin
µ

2

⌘

≈ 8.7 m

quadrupoles 
dipoles 



21 T. Satogata / January 2015          USPAS Accelerator Physics 

Propagating Lattice Parameters 

  If I have                   and I have the transport matrix       

that transports particles from            , how do I find the 

new lattice parameters                  ? 

 

(β,α, γ)(s1)

s1 → s2

M(s1, s2)

(β,α, γ)(s2)

M(s1, s1 + C) = I cosµ+ J sinµ =

✓

cosµ+ α(s1) sinµ β(s1) sinµ
−γ(s1) sinµ cosµ− α(s1) sinµ

◆

=

✓

m11 m12

m21 m22

◆





β(s2)
α(s2)
γ(s2)



 =





m2

11
−2m11m12 m2

12

−m11m21 m11m22 +m12m21 −m12m22

m2

21
−2m21m22 m2

22









β(s1)
α(s1)
γ(s1)





Homework  
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Propagating Lattice Parameters 

  If I have                   and I have the transport matrix       

that transports particles from            , how do I find the 

new lattice parameters                  ? 

 

The J(s) matrices at s1, s2 are related by 

 

 

Then expand, using det M=1 

 

 

 

 

 
 

 Quadratic: Lattice elements repeat themselves for 

(β,α, γ)(s1)

s1 → s2

M(s1, s2)

(β,α, γ)(s2)

M(s1, s1 + C) = I cosµ+ J sinµ =

✓
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◆
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✓
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m21 m22

◆

J(s2) = M(s1, s2)J(s1)M
−1(s1, s2)

J(s2) =

✓

α(s2) β(s2)
−γ(s2) −α(s2)

◆

=

✓

m11 m12

m21 m22

◆✓

α(s1) β(s1)
−γ(s1) −α(s1)

◆✓

m22 −m12

−m21 m11

◆





β(s2)
α(s2)
γ(s2)
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M = ±I
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========== What’s the Ellipse? ========== 

  Area of an ellipse that envelops a given percentage of the 

beam particles in phase space is related to the emittance 

  We can express this in terms of our lattice functions! 



24 T. Satogata / January 2015          USPAS Accelerator Physics 

Invariants and Ellipses 

  We assumed A was constant, an invariant of the motion 

A can be expressed in terms of initial coordinates to find 

 

This is known as the Courant-Snyder invariant: for all s, 

 

Similar to total energy of a simple harmonic oscillator 

      looks like an elliptical area in           phase space 

Our matrices look like scaled rotations (ellipses) in phase space 

on x(s) = A
p

β(s) cos[φ(s) + φ0]x

W ≡ A2
= γ0x

2

0
+ 2α0x0x

0

0
+ β0x

02

0

W (x, x0)

W = γ(s)x(s)2 + 2α(s)x(s)x0(s) + β(s)x0(s)2

s=s0 s=s0+C s=s0+2C s=s0+3C 
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Emittance 

  The area of the ellipse inscribed by any given particle in 

phase space as it travels through our accelerator is called 

the emittance    : it is “constant” and given by 

Emittance is often quoted as the area of the ellipse that would 

contain a certain fraction of all (Gaussian) beam particles 

e.g. RMS emittance contains 39% of 2D beam particles 

Related to RMS beam size 

 

    RMS beam size depends on s!  

 

RMS emittance convention is fairly standard 

    for electron rings, with units of mm-mrad 

⌅ = ⇧W = ⇧[⇤(s)x(s)2 + 2α(s)x(s)x0(s) + ⇥(s)x0(s)2]

✏

σRMS

⇤RMS =
p

⇥β(s)
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Adiabatic Damping and Normalized Emittance 

  But we introduce electric fields when we accelerate 

  When we accelerate, invariant emittance is not invariant! 

  We are defining areas in            phase space 

  The definition of x doesn’t change as we accelerate 

  But                                    does since      changes! 

       scales with relativistic beta, gamma: 

  This has the effect of compressing x’ phase space by 

 

 

  Normalized emittance is the invariant in this case 

unnormalized emittance goes down as we accelerate 

This is called adiabatic damping, important in, e.g., linacs 

(x, x0)

x0
≡ dx/ds = px/p0 p0

p0 p0 ∝ βγ

βγ

✏N ≡ βγ✏
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Phase Space Ellipse Geography 

  Now we can figure out some things from a phase space 

ellipse at a given s coordinate: 

x2 x1 

y1 

y2 

x1 =
p

W/γ(s) x2 =
p

Wβ(s)

y1 =
p

W/β(s) y2 =
p

Wγ(s)
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Rings and Tunes 

  A synchrotron is by definition a periodic focusing system 

  It is very likely made up of many smaller periodic regions too 

  We can write down a periodic one-turn matrix as before 

  We define tune as the total betatron phase advance in one 

revolution around a ring divided by the total angle 2π

M = I cosµ+ J sinµ I =

✓

1 0
0 1

◆

J(s0) ≡

✓

α(0) β(0)
−γ(0) −α(0)

◆

Qx,y =
∆µx,y

∆θ
=

1

2π

I
ds

βx,y(s)
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Tunes 

  There are horizontal and vertical tunes 

  turn by turn oscillation frequency 

  Tunes are a direct indication of the amount of focusing in 
an accelerator 

  Higher tune implies tighter focusing, lower 

  Tunes are a critical parameter for accelerator performance 

  Linear stability depends greatly on phase advance 

  Resonant instabilities can occur when 

  Often adjusted by changing groups of quadrupoles 

hβx,y(s)i

nQx +mQy = k

Mone turn = I cos(2πQ) + J sin(2πQ)
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6.2: Stability Diagrams 

  Designers often want or need to change the focusing of 

the two transverse planes in a FODO structure 

  What happens if the focusing/defocusing strengths differ? 

  Recalculate the M matrix and use dimensionless quantities 

     then take the trace for stability conditions to find 

L/2 L/2

cell 

−2fF fD −2fF

F ≡

L

2fF
D ≡

L

2fD

cosµ = 1 +D − F −

FD

2
sin

2
µ

2
=

FD

4
+

F −D

2
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Stability Diagrams II 

  For stability, we must have 

  Using                                 , stability limits are where 

  These translate to an a “necktie” stability diagram for FODO 

cosµ = 1 +D − F −

FD

2
sin

2
µ

2
=

FD

4
+

F −D

2

−1 < cosµ < 1

cosµ = 1− 2 sin
2
µ

2

sin
2
µ

2
= 0 sin

2
µ

2
= 1

stable

unstable

unstable
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6.3: Dispersion 

  There is one more important lattice parameter to discuss 

  Dispersion        is defined as the change in particle position 

with fractional momentum offset 

 

 

Dispersion originates from momentum dependence of dipole bends 

Equivalent to separation of optical wavelengths in prism 

 

δ ≡ ∆p/p0

η(s)

White light with 
many frequencies 

(momenta) 

enters, all with 
same initial 

trajectories (x,x’) 

Different positions 
due to different bend 

angles of different 

wavelengths 
(frequencies, 

momenta) of 
incoming light 

x(s) = betatron + ηx(s)δ ηx(s) ≡
dx

dδ
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(xkcd interlude) 

http://www.xkcd.org/964/ 

This is known in accelerator 
lattice design language as a 
䇾double bend achromat䇿 
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Dispersion 

  Add explicit momentum dependence to equation of motion again 

 

Assume our ansatz solution and use initial conditions to find 

 

 

 

 

 

 

 

The trajectory has two parts:  

 

D(s) = S(s)

Z
s

0

C(τ)

ρ(τ)
dτ − C(s)

Z
s

0

S(τ)

ρ(τ)
dτ

x(s) = C(s)x0 + S(s)x0

0
+D(s)δ0

x
0(s) = C

0(s)x0 + S
0(s)x0

0
+D

0(s)δ0





x(s)
x0(s)
δ(s)



 =





C(s) S(s) D(s)
C 0(s) S0(s) D0(s)
0 0 1









x0

x0

0

δ0





x(s) = betatron + ηx(s)δ ηx(s) ≡
dx

dδ

Particular solution of inhomogeneous 
differential equation with periodic ρ(s) 

x
00 +K(s)x =

δ

ρ(s)
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Dispersion Continued 

  Substituting and noting dispersion is periodic, 

 

  If we take            we can solve this in a clever way 

  Solving gives 





ηx(s)
η0
x
(s)

δ(s)



 =





C(s) S(s) D(s)
C 0(s) S0(s) D0(s)
0 0 1









ηx(s)
η0
x
(s)
δ0





ηx(s+ C) = ηx(s)

δ0 = 1
✓

ηx(s)
η
0

x
(s)

◆

=

✓

C(s) S(s)
C 0(s) S0(S)

◆✓

ηx(s)
η
0

x
(s)

◆

+

✓

D(s)
D0(s)

◆

= M

✓

ηx(s)
η
0

x
(s)

◆

+

✓

D(s)
D0(s)

◆

(I −M)

✓

ηx(s)
η
0

x
(s)

◆

=

✓

D(s)
D0(s)

◆

⇒

✓

ηx(s)
η
0

x
(s)

◆

= (I −M)−1

✓

D(s)
D0(s)

◆

achromat : D = D
0
= 0

η(s) =
[1− S0(s)]D(s) + S(s)D0(s)

2(1− cosµ)

η
0(s) =

[1− C(s)]D0(s) + C 0(s)D(s)

2(1− cosµ)
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FODO Cell Dispersion 

  A periodic lattice without dipoles has no intrinsic dispersion 

  Consider FODO with long dipoles and thin quadrupoles 

  Each dipole has total length            so each cell is of length 

  Assume a large accelerator with many FODO cells so   

cell 

ρθC/2 ρθC/2

ρθC/2

θC ⌧ 1

L = ρθC

Mdipole =





1
L

2
LθC

8

0 1
θC

2

0 0 1





MFODO = M
−2fMdipoleMfMdipoleM−2f

M
−2f =





1 0 0

−

1

2f
1 0

0 0 1



 Mf =





1 0 0
1

f
1 0

0 0 1





MFODO =

0

B

B

@

1− L2

8f2 L
⇣

1 + L
4f

⌘

L
2

⇣

1 + L
8f

⌘

θC

−

L
4f2

⇣

1− L
4f

⌘

1− L2

8f2

⇣

1− L
8f

−

L2

32f2

⌘

θC

0 0 1

1

C

C

A

−1/2f 1/f −1/2f
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FODO Cell Dispersion 

  Like    before, this choice of periodicity gives us 

  Changing periodicity to defocusing quad centers gives    

β̂ η̂x

η
0

x = 0 at max

η̌x

θc =
2π

25
(25 FODO cells)

η̂x =
LθC

4

"

1 +
1

2
sin

µ
2

sin
2 µ

2

#

η̌x =
LθC

4

"

1−
1

2
sin

µ
2

sin
2 µ

2

#

η
0

x
= 0 at min
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RHIC FODO Cell 

Horizontal 

Vertical 

Horizontal dispersion 

dipole dipole 

quadrupole 

half 
quadrupole 

half 
quadrupole 



39 T. Satogata / January 2015          USPAS Accelerator Physics 

6.6: Dispersion Suppressor 

  The FODO dispersion solution is non-zero everywhere 

  But in straight sections we often want 

•  e.g. to keep beam small in wigglers/undulators in a light source 

  We can 䇾match䇿 between these two conditions with with a 
dispersion suppressor, a non-periodic set of magnets 

that transforms FODO             to zero. 

  Consider two FODO cells with different total bend angles 

•  Same quadrupole focusing to not disturb                much 

•  We want this to match                              to 

•               at ends to simplify periodic matrix   

ηx = η
0

x = 0

(ηx, η
0

x)

(ηx, η
0

x) = (η̂x, 0) (ηx, η
0

x) = (0, 0)

αx = 0

θ1/2 θ2/2θ1/2 θ2/2

θ1, θ2

1/f 1/f−1/f−1/2f −1/2f

βx, µx
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FODO Dispersion Suppressor 

D(s) =
L

2

✓

1 +
L

8f

◆✓

3−
L2

4f2

◆

θ1 + θ2

]

D0(s) =

✓

1−
L

8f
−

L2

32f2

◆✓

1−
L2

4f2

◆

θ1 + θ2

]

multiply matrices ⇒

η̂x =
4f2

L

✓

1 +
L

8f

◆

(θ1 + θ2)

θ = θ1 + θ2 two cells, one FODO bend angle → reduced bending

FODO peak 
dispersion, 

slope η’=0 

Zero dispersion 
area 

slope η’=0 





0
0
1



 =





cos 2µx βx sin 2µx D(s)

−

sin 2µx

βx

cos 2µx D0(s)

0 0 1









η̂x
0
1





θ1 =

 

1−
1

4 sin
2 µ

2

!

θ θ2 =

 

1

4 sin
2 µ

2

!

θ
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FODO Cell Dispersion and Suppressor 

Dispersion-free Insertion 



42 T. Satogata / January 2015          USPAS Accelerator Physics 

Mismatched Dispersion 

  Someone in class asked what mismatched dispersion 

looks like 

  For example, this is what happens when the second 

dispersion suppressor is eliminated and the dipole-free 

FODO cells run right up against the FODO cells with dipoles 

Dispersion
-free 

Insertion 

Dispersion 
Mismatch – 

not periodic! 
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6.5: π/2 Insertion 

  Insertions and matching: modular accelerator design 

  FODO sections have very regular spacings of quads 

  Periodicity of quadrupoles => periodicity of focusing 

  But we need some long quadrupole-free sections 

  RF, injections, extraction, experiments, long instruments 

  Can we design a “module” that fits in a FODO lattice with 
a long straight section, and matches to FODO optics? 

  Yes: a minimal option is called the π/2 insertion 

  Matching lattice functions (β,α)x,y at locations A,B 
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π/2 Insertion 

M =

 

1−
l1l2
f2 2l1 + l2 −

l2
1
l2

f2

−

l2
f2 1−

l1l2
f2 −

l2
f

!

=

✓

cosµ+ α sinµ β sinµ

−γ sinµ cosµ− α sinµ

◆

M =

✓

1 l1

0 1

◆✓

1 0

−

1

f
1

◆✓

1 l2

0 1

◆✓

1 0
1

f
1

◆✓

1 l1

0 1

◆

cosµ = 1−
l1l2

f2
β sinµ =

✓

2−
l1l2

f2

◆

l1 + l2 γ sinµ =
l2

f2

m11 −m22 comparison : l2 = αf sinµ

Maximum l2 when sinµ = 1, µ =
π

2
, cosµ = 0
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π/2 Insertion 

Design constraints : f =
α

γ
l2 =

α2

γ
l1 = β − l2

Mπ/2 =

✓

α β

−γ −α

◆

= J (recall J2 = −I)

π/2 insertion 

5m FODO drifts 

l1=7.95m, l2=8.75m 
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Multiple π/2 Insertions 

M
2
= −I

M
4
= I
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Multiple π/2 Insertions 

M
2
= −I

M
4
= I

Lattice elements repeat: see p. 22 
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Example: RHIC FODO Lattice Revisited 

  Note modular design, including low-beta insertions 

  Used for experimental collisions 

  Minimum beam size σ (with zero dispersion) 

•  maximize luminosity 

  Large s, beam size in “low beta quadrupoles” 

  Other facilities also have longitudinal bunch compressors 

•  Minimize longitudinal beam size (bunch length) for, e.g, FELs 

Horizontal Vertical 

low-beta insertion 

FODO 

low-beta insertion 

matching 

quadrupoles dipoles 

Missing dipole dispersion suppressor 


