University Physics 226N/231N Old Dominion University

Work, Energy, and Conservation

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-ODU

Monday, October 3, 2016 Reminder: The Second Midterm will be Weds Oct 19 2016

Happy Birthday to Stevie Ray Vaughan, Gwen Stefani, Lena Headey, India Arie, Alicia Vikander, and James Buchanan (1986 Nobel)! Happy <u>Blue Shirt Day</u> and National Techies Day!

Please set your cell phones to "vibrate" or "silent" mode. Thanks!

efferson Lab

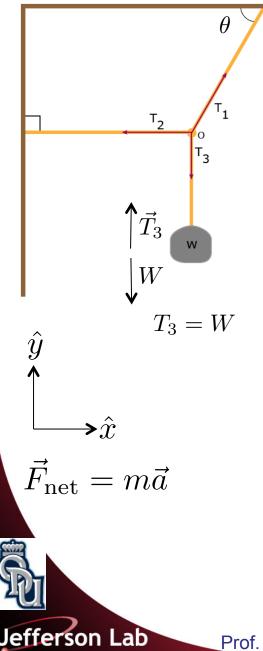
Prof. Satogata / Fall 2016 ODU University Physics 226N/231N 1

I SEE (1.2)

- Most textbooks try to help by providing a structure, or recipe, that you can use when you are solving problems
- Our text uses the mnemonic "I SEE"
 - I: Identify the relevant concepts
 - What are the physical quantities are known, and unknown?
 - What is a possible model or approach to "tell the story"?
 - S: Set Up the problem
 - Tell the story: Draw a picture and choose equations to solve.
 - E: Execute the solution
 - "Do the math" or "crunch the numbers".
 - Remember to always use units on all physical quantities!
 - E: Evaluate your answer

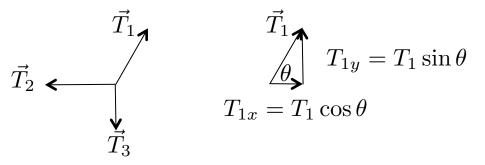
efferson Lab

• Does your answer make sense? Check the units.


I SEE ("Statics")

- I: Identify the relevant concepts
 - What are the physical quantities are known, and unknown?
 - "Statics" problems involve forces acting on objects: $\vec{F}_{net} = m\vec{a}$
 - Usually those objects are in equilibrium ($\vec{a} = 0$) but not always
- S: Set Up the problem
 - Tell the story: Draw a picture and choose equations to solve.
 - Draw your coordinate system. Decompose all vectors into components.
 - Write out Newton's Second Law in each relevant dimension.
- E: Execute the solution
 - "Do the math" or "crunch the numbers".
 - Can involve solving "multiple equations in multiple unknowns"
- E: Evaluate your answer

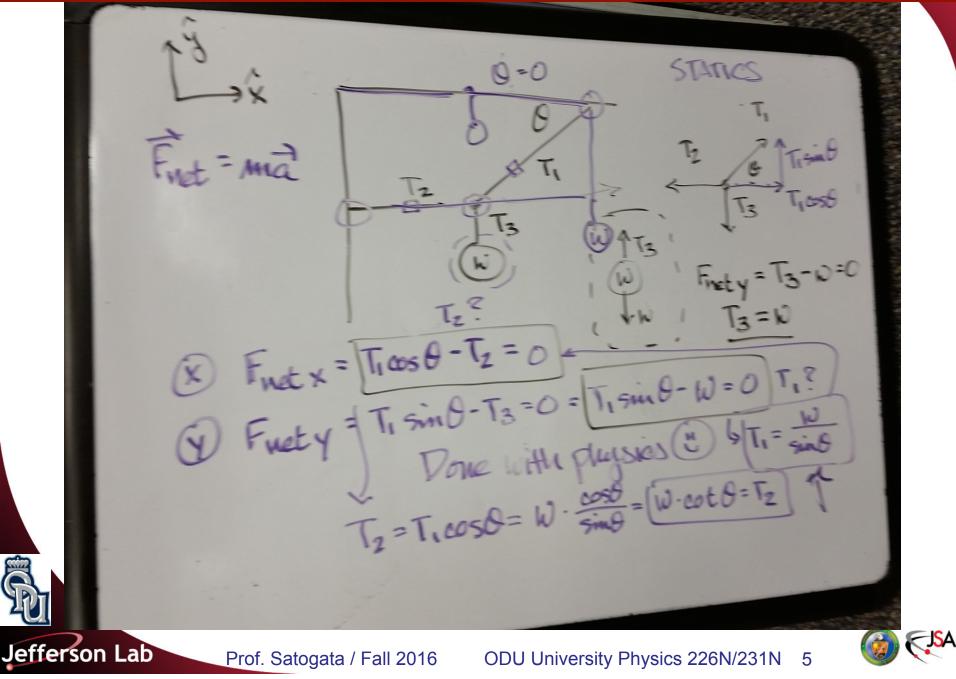
efferson Lab


• Does your answer make sense? Check the units.

Example Statics Problem

Can apply Newton's 2nd Law to any point (but it is "trivial" for points along the ropes)

At point "o" where tensions meet, draw forces and decompose forces into their x,y components:


Then use Newton's 2nd Law in each of x and y directions:

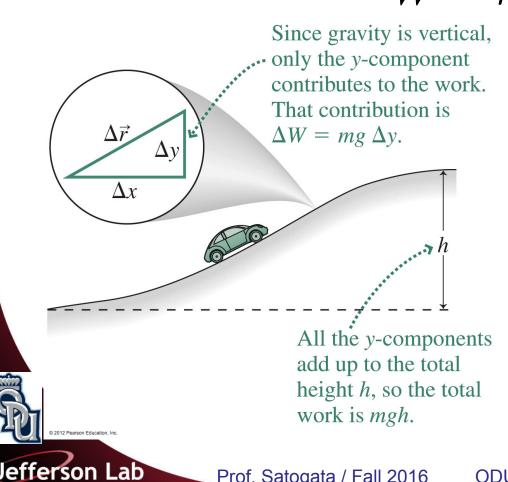
$$\begin{array}{l} \textbf{X} \\ \textbf{Y} \end{array} \quad F_{\text{net}, \mathbf{x}} = T_1 \cos \theta - T_2 = 0 \\ \textbf{Y} \end{array} \quad F_{\text{net}, \mathbf{y}} = T_1 \sin \theta - T_3 = T_1 \sin \theta - W = 0 \end{array}$$

Here you are done with the physics: the rest is math

Example Statics Problem (Photo from class)

STATICS 1 dentify statics (2) Setup M2 given velocity MK Us coeff of frict 3 Evaluato N 2 Law FE= fecen mothe M= Fgeoso n Fuety= n-Fg cost=0 6. Fgcost T- 4 Fg 65 8 -0 atg smb-11, T Fret x = Fq sin & -T T= Fgsind- Hickgoose Fg 42 Fgsind - MACH = 0

I SEE (Energy and Work)

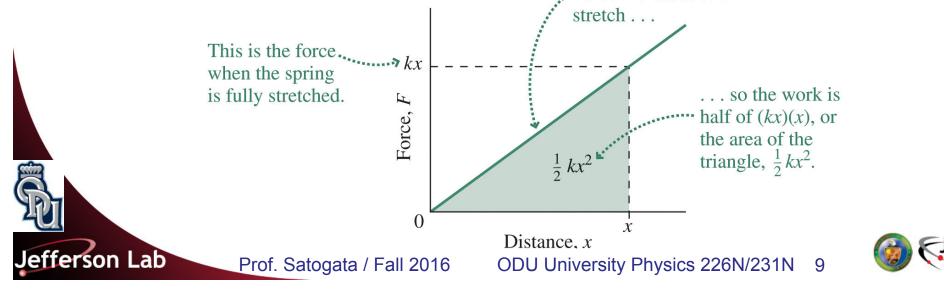

- I: Identify the relevant concepts
 - What are the physical quantities are known, and unknown?
 - Energy problems involve comparing instances of time: $\vec{E}_{net} = constant$
 - Often those objects are moving at some point (kinetic energy)
- S: Set Up the problem
 - Tell the story: Draw a picture and choose equations to solve.
 - Write out an energy accounting spreadsheet. Fill in known energies.
- E: Execute the solution
 - "Do the math" or "crunch the numbers".
 - Can involve solving "multiple equations in multiple unknowns"
- E: Evaluate your answer

efferson Lab

• Does your answer make sense? Check the units.

• The work done by an agent lifting an object of mass m against gravity depends only on the vertical distance h:

$$W = mgh$$


- The work is **positive** if the object is raised (moved against the force of gravity) and **negative** if it's lowered (moved with the force of gravity).
- The horizontal motion

Work Done in Stretching a Spring

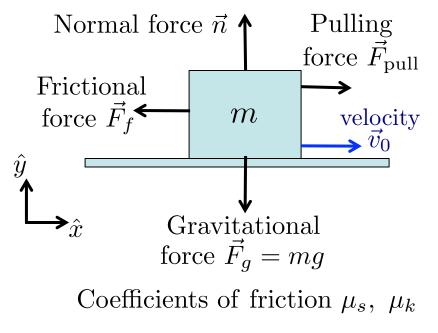
- A spring exerts a force $F_{\text{spring}} = -kx$
- Someone stretching a spring exerts a force $F_{\rm stretch} = +kx$, and the work done is

$$W = \int_0^x F(x) \, dx = k \int_0^x x \, dx = \left(\frac{1}{2}kx^2\right)|_0^x = \left|\frac{1}{2}kx^2 = W\right|$$

Energy

- **Energy**: the capacity of an object to perform work
 - Energy is what we add up when we do our bookkeeping
 - Work is how energy moves through application of forces
- How do we do the energy bookkeeping for a system?
 - Add up energy from a variety of different sources and things that we know can do work
 - Conservation of energy: total energy for a system is constant
- Kinetic energy: energy of object's motion, $KE = \frac{1}{2} mv^2$
- Gravitational potential energy: energy from the potential of falling a certain distance under constant gravity: PE_a=mg∆y
- Spring potential energy: $PE_s = \frac{1}{2} kx^2$

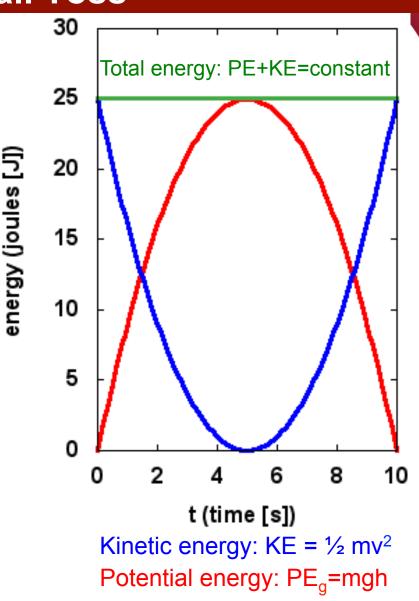
efferson Lab


- Energy lost to friction over distance Δx : $E_f = \mu_x n \Delta x$
- Chemical energy, nuclear energy, and others...

Work and Net Work

- **Energy**: the capacity of an object to perform work
 - Energy is what we add up when we do our bookkeeping
 - Work is how energy moves through application of forces
- Since work involves transfer of energy, and we want to account for all energy, it's important to account for all forces
- Example: Pulling a box against friction at constant velocity
 - Net sum of forces on box is zero
 - So work done on box is zero
 - But I still do work (I'm exerting a force over a distance)
 - The energy of my work goes into frictional losses

efferson Lab

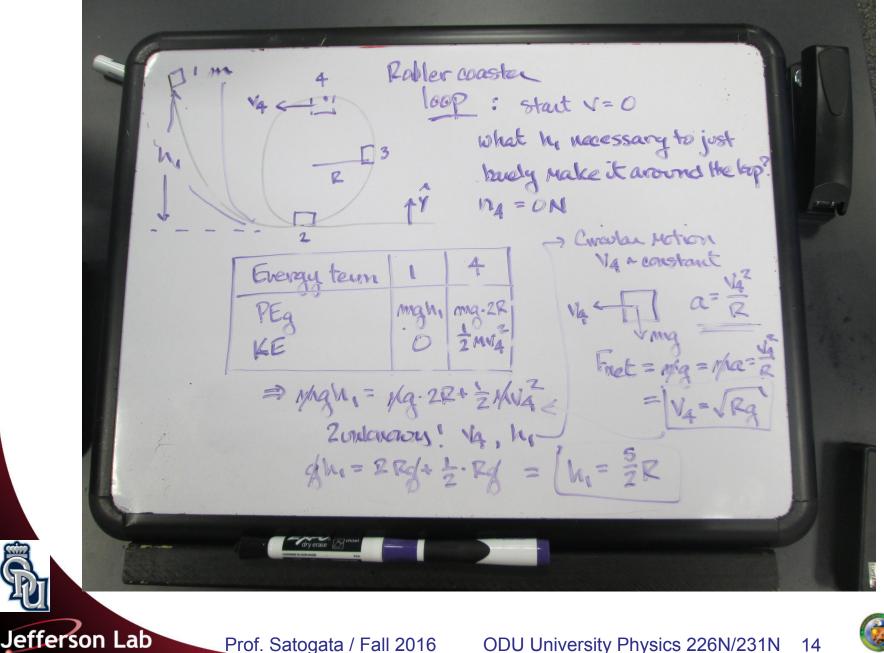


Example: Ball Toss

- Consider your professor tossing a juggling ball upwards
 - I do some work on it to add energy to the system
 - The system is now the ball!
- At start, h=0 m and all energy is kinetic energy
- As the ball moves up, potential energy grows and kinetic energy goes down
- At top, all energy is potential energy since v=0 m/s and KE=0 J
 - As the ball comes back down, potential energy is released and kinetic energy grows again

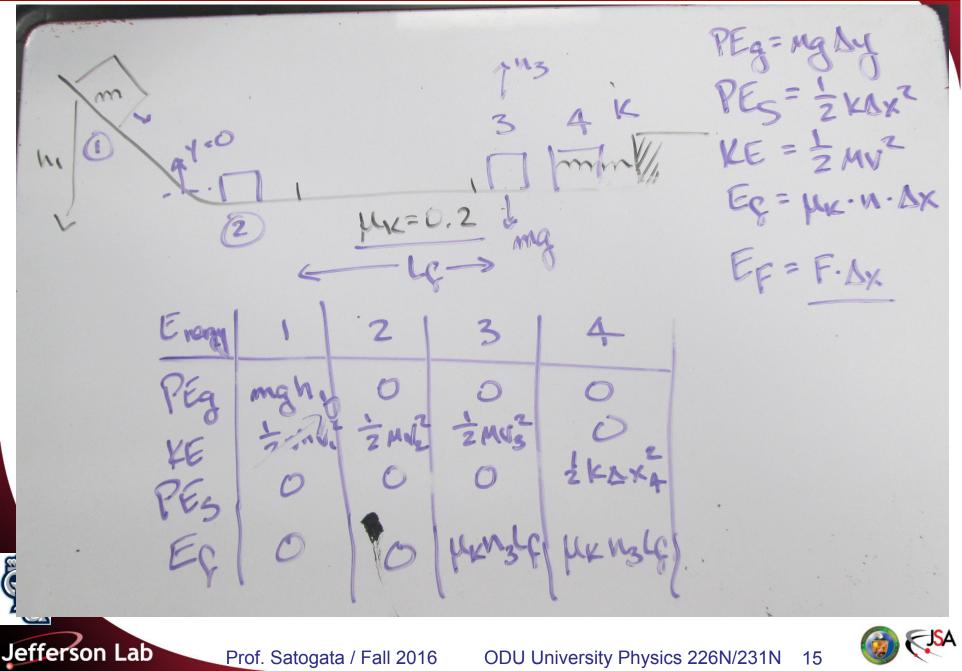
lefferson Lab

ODU University Physics 226N/231N 12


Energy Conservation: Pendulum

pendulom Evergy PEg = mg Ay $\Delta \gamma_1 = L - L \cos \Theta$ PES= = = Kx2 KE = ±MYZ Eg= HKNAX Energyteum 2 PEg KE 21= 22 mg by, $\frac{1}{2}Mv_2^2 \qquad mg \Delta \gamma_1 = \frac{1}{2}Mv_2^2$ $V_2 = \sqrt{2g} \Delta y_1$ Frety = may = $T - mg = \frac{N_2^2}{L} = \frac{2g(1 - \cos \theta)}{V_2} = \sqrt{2gL(1 - \cos \theta)}$ T= mg+ 2mg(1-coso) = mg[1+2(1-coso] ma (3-2005)

Jefferson Lab


Energy Conservation: Loop the Loop

Prof. Satogata / Fall 2016

Energy Conservation: With Friction and Spring

