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University Physics 226N/231N 
  Old Dominion University 

 
Ch 10: Angular Work, Power, Momentum 

Dr. Todd Satogata (ODU/Jefferson Lab) 
satogata@jlab.org 

http://www.toddsatogata.net/2016-ODU 
 

Monday, October 31, 2016 
Reminder: The Third Midterm will be Mon Nov 21 2016 

 
Happy Birthday to John Keats, Dan Alderson, Nick Saban, 

Neal Stephenson, Rob Schneider, and Peter Jackson! 
Happy Halloween! 

 

 
 

Please set your cell phones to “vibrate” or “silent” mode. Thanks! 
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Review: Constant Angular Acceleration 

§  Problems with constant angular acceleration are exactly 
analogous to similar problems involving linear motion in 
one dimension. 
§  The exact same equations apply, with   x →θ , v →ω , a →α
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Review: Torque 

§  Torque τ is the rotational analog of force, and results from 
the application of one or more forces. 

§  Torque is relative to a chosen rotation axis. 
§  Torque depends on: 

§  the distance from the rotation axis to the force 
application point. 

§  the magnitude of the force 
§  the orientation of the force relative to the 

displacement     from axis to force application 
point: 

�F

�r

⇤⇥ = ⇤r ⇥ ⇤F ⇥ = rF sin �
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Review: Rotational Analog of Newton’s Law 

§  Rotational inertia I (or moment of inertia) is the rotational 
analog of mass. 
§  Rotational inertia depends on the 

distribution of mass and its distance 
from the rotation axis, similar to 
center of mass. 

§  Rotational acceleration, torque, 
and rotational inertia combine 
to give the rotational analog 
of Newton’s second law  
 
 
  
(or, more properly with vectors)    
 

⇥ = I�

⇤⇥ = I⇤�

F = ma

like �F = m�a
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Review: Calculating Rotational Inertia 

§  For a single point mass m, rotational inertia is the product of mass 
with the square of the distance r from the rotation axis: 
 

•  For a system of discrete masses, the 
rotational inertia is the sum of the 
rotational inertias of the individual 
masses: 
 
 

•  For continuous matter, the rotational 
inertia is given by an integral over the 
distribution of matter: 
 
 
 
 
        Similar to center of mass:  
 

I =
X

mir
2
i

I = mr2

I =

Z
r2 dm

�rcm =

R
�r dm

M
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Some Rotational Inertias of Simple Objects 
§  We really do need to use calculus to figure out rotational inertias of 

most simple (three-dimensional) geometrical objects 

I =
1

12
ML2 I = MR2

I =
2

5
MR2 I =

1

12
M(a2 + b2)

I =
1

3
ML2

I =
1

2
MR2

I =
2

3
MR2

Solid 

Hollow I =
1

12
Ma2
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Review: Parallel Axis Theorem 

§  If we know the rotational inertia Icm about an axis through the 
center of mass of a body, the parallel-axis theorem allows us 
to calculate the rotational inertia I through any parallel axis.  

§  The parallel-axis theorem 
states that 

 where d is the distance from 
the center-of-mass axis to the 
parallel axis and M is the total 
mass of the object. 

I = Icm +Md2
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Example: Hula Hoop Rotational Inertia 
§  What is the rotational inertia of a 

hula hoop of radius r and mass 
M around its edge? 

§  Its center of mass is (obviously) 
at the center of the circle and all 
of its mass is at the same radius 

§  The parallel axis theorem gives 

Interesting… It takes twice as much 
torque to turn a ring around its 
edge as it takes to turn around its 
center. I = Mr2 I =?

Icm = Mr2

r

Iedge = Mr2 +Mr2 = 2Mr2
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Example: Hula Hoop Rotational Inertia 
§  What is the rotational inertia of a 

hula hoop of radius r and mass 
M around an axis 2r from its 
center? 

§  Its center of mass is (obviously) 
at the center of the circle and all 
of its mass is at the same radius 

§  The parallel axis theorem 
gives… 

I = Mr2 I =?

Icm = Mr2
2r

Icm = Mr2

I = . . .?
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Calculating Parallel Axis Theorem 
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Homework: Moment of Inertia 

§  Note that the definition of moment of inertia means that 
individual moments of inertia can be added together 
§  For example, one of the homework problems involves a solid 

rod plus two additional point masses on the ends of the rod, 
rotating around the center of the rod 

Alternative 
rotational 
axis 
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Combining Linear and Rotational Motion 
§  We now have the tools to do some 

interesting problems… 
§  Bucket of mass m unrolls from a cylinder 

of mass M and radius R into a well. 
§  What is the bucket’s (linear) acceleration? 

bucket cylinder

Cylinder :
X

⇥ = I�

Icylinder =
1

2
MR2

⇥ = TR sin � = TR

� = a/R

) TR =

✓
1

2
MR2

◆
a

R

) T = Ma/2

ŷ

Bucket :
X

F = mg � T = ma

mg �Ma/2 = ma

a =
mg

M/2 +m

Be careful	
about signs!	
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Similarity to Former Inclined Plane Problems 
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Combining Rotational and Linear Dynamics 
§  In problems involving both linear and rotational motion: 

§  IDENTIFY the objects and forces or torques acting. 
§  DEVELOP your solution with drawings and by writing Newton’s law 

and its rotational analog.  Note physical connections between the 
objects. 

§  EVALUATE to find the solution. 
§  ASSESS to be sure your answer makes sense. 

A bucket of mass m drops 
into a well, its rope 
unrolling from a cylinder of 
mass M and radius R. 
 
What’s its acceleration? 

Free-body diagrams 
for bucket and cylinder 
 
Rope tension    provides 
the connection 

Newton’s law, bucket: 
 
       Fnet = mg–T = ma 
 
Rotational analogy of 
Newton’s law, cylinder: 
 
             RT = Ia/R 
 
Here  
 
Solve the two equations to 
get 

  
a = mg

m+ 1
2 M

  I =
1
2 MR2

  
!
T



Prof. Satogata / Fall 2016         ODU University Physics 226N/231N 15 

Rolling Motion 

§  Rolling motion combines translational (linear) motion 
and rotational motion. 

§  The rolling object’s center of mass undergoes translational 
motion. 

§  The object itself rotates about the center of mass. 
§  In true rolling motion, the object moves without slipping and 

its point of contact with the ground is instantaneously at rest. 
§  Then the rotational speed ω and linear speed v are related 

by v = ωR, where R is the object’s radius. 
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Rolling and Rotating 
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Rolling and Rotating 
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Rotational Energy 
§  A rotating object has kinetic energy                     associated 

with its rotational motion alone. 
§  It may also have translational kinetic energy:  

§  In problems involving energy conservation with rotating 
objects, both forms of kinetic energy must be considered. 
§  For rolling objects, the two are related: 

•  The relation depends on the rotational inertia. 

  Krot =
1
2 Iω 2

  K trans =
1
2 Mv2.

Example: A solid ball rolls down a hill. How 
fast is it moving at the bottom? Equation for energy conservation 

Energy bar 
graphs 

Solution: 

  
v =

10

7
gh

2 2

2
2 2 2

1 1
2 2
1 1 2 7
2 2 5 10

Mgh Mv I

vMv MR Mv
R

ω= +

⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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Energy Conservation Example 

A rework of a problem I tried on the board in class… 
Consider the loop the loop problem, now with a solid ball rolling down a track 
     and barely making it around the loop. What is the minimum height that the 
     ball needs to roll from (without slipping) to make it around a loop of radius R? 

R

r I =
2

5
Mr2

h

State KEtranslation KErotation PEg 

Top of 
ramp 

0 0 

Top of loop 1

2
Mv2

1

2
I!2 Mg(2R)

Mgh

Rotating without slipping: 
 
Solid uniform ball: 
 
Barely make it through the loop: 
 
 
 
  Conservation of energy: 
 
   

! =
v

r

I =
2

5
Mr2

acentrip =
v2

R
= g ) v2 = Rg

Mgh =
1

2
Mv2 +

1

2
I!2 + 2MgR

Mgh =
1

2
Mv2 +

1

5
Mr2!2 + 2MgR

gh =
Rg

2
+

Rg

5
+ 2gR ) h = 2.7R

r2!2 = v2 = Rg

Watch: 
https://www.youtube.com/watch?v=4fCFxD_Ud9E  
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Rotational Work 
§  A tangential force applied to a rotating body does work on it. 
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Summary 
§  Rotational motion in one dimension is exactly analogous to 

linear motion in one dimension. 
§  Linear and angular motion: 

§  Analogies between rotational and linear quantities: 
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Direction of the Angular Velocity Vector 

§  The direction of angular velocity is given by the 
right-hand rule. 
§  Curl the fingers of your right hand in the direction of rotation, and your 

thumb points in the direction of the angular velocity vector   
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Direction of the Angular Acceleration 

§  Angular acceleration points in the direction of the change        
in the angular velocity        : 

§  The change can be in the same direction as the angular 
velocity, increasing the angular speed. 

§  The change can be opposite the angular velocity, decreasing 
the angular speed. 

§  Or it can be in an arbitrary direction, changing the direction and 
speed as well. 

 Δ
!
ω

   
!
α = lim

Δt→0

Δ
!
ω
Δt

=
d !ω
dt
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–  Of the two possible directions 
perpendicular to    
the correct direction is given 
by the right-hand rule. 

–  Torque is compactly 
expressed using the vector 
cross product: 

Direction of the Torque Vector 

§  The torque vector is perpendicular to both the force 
vector and the displacement vector from the rotation 
axis to the force application point. 
§  The magnitude of the torque is 
τ = rFsinθ. 

   
!r  and 

!
F ,

  
!
τ =
!r ×
!
F
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–  For the case of a particle in a 
circular path, L = mvr, and     is 
upward, perpendicular to the 
circle. 

–  For sufficiently symmetric 
objects,      is the product of 
rotational inertia and angular 
velocity: 

Angular Momentum 

§  For a single particle, angular momentum    is a vector 
given by the cross product of the displacement vector 
from the rotation axis with the linear momentum of the 
particle: 

  
!
L = !r × !p

  
!
L

  
!
L

  
!
L

  
!
L = I !ω
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§  In terms of angular momentum, the rotational analog of 
Newton’s second law is 
 

§  Therefore a system’s angular momentum changes only if 
there’s a non-zero net torque acting on the system. 

§  If the net torque is zero, then angular momentum is 
conserved. 

•  Changes in rotational inertia then result in changes in 
angular speed: 

Newton’s Law and Angular Momentum 

  
!
τ =

d
!
L

dt

The skater’s angular momentum 
is conserved, so her angular 
speed increases when she 
reduces her rotational inertia. 
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Conservation of Angular Momentum 

§  The spinning wheel initially contains all the system’s 
angular momentum. 

§  When the student turns the wheel upside down, she 
changes the direction of its angular momentum vector. 

§  Student and turntable rotate the other way to keep the 
total angular momentum unchanged. 
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Precession 
§  Precession is a three-dimensional phenomenon involving 

rotational motion. 
§  Precession occurs when a torque acts on a rotating object, changing 

the direction but not the magnitude of its angular momentum vector. 
§  As a result the rotation axis undergoes circular motion: 

Precession of a gyroscope Precession slowly changes 
the direction of Earth’s rotation axis 
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Summary 

§  Angular quantities are vectors whose direction is generally 
associated with the direction of the rotation axis. 
§  Specifically, direction is given by the right-hand rule. 
§  The vector cross product provides a compact representation 

for torque and angular momentum. 

 
 

§  Angular momentum is the rotational analog of linear 
momentum:  

§  In the absence of a net external torque, a system’s angular 
momentum is conserved. 

   
!
L = !r × !p;  with symmetry, 

!
L = I !ω.


