University Physics Practice Problems Fall Semester 2012

1. One Dimensional Motion
A ball is thrown up in the air from a height y = 0 m at time ¢ = 0 s. It passes by a certain vertical
location at time ¢t = 0.30 s when going up, then passes by that location again at time ¢ = 1.80 s when
it’s coming down.

(a)

What is the initial velocity of the ball?

Solution: The phrasing of the problem implies that this is a one-dimensional problem, and that
the only force that the ball is feeling is the force of gravity, F; = mg pointing down. With that
in mind, we label the “up” direction as positive, so the force of gravity with the proper sign is
really F; = —mg. Newton’s 2nd la w also tells us that Fy = ma, = —mg, so the acceleration due
to gravity is a, = —g.

We have three equations that we primarily use for kinematics problems. For the y dimension here
(the only one we care about), y — yo = vot + 3ayt?, v = vg + ayt, and v* — v = 2a,(y — yo).
We are given times, so we probably don’t want to use the last equation to figure anything out
yet since it doesn’t involve time ¢. We also don’t know initial or final velocities, so we probably
can’t use the second equation. So look at the first equation and think a bit. A bit of thinking will
give you the insight that the motion up and down from the “certain vertical location” is just a
separate (smaller) one dimensional motion problem where we know the time it takes for the ball
to go up and come back down again, ¢ = 1.80 s — 0.30 s = 1.50 s. Here y — yo = 0 m (the ball
starts out at the same vertical location as it ends 1.50 s later), and we know a, = —g. We can
then calculate

1 2
Yy—1Y = vot+ §ayt
1
Om = wvp(1.50s)+ 5(—9.8 m/s%)(1.50 s)* = (1.50 s)vg — 11.025 m
11.025
11.025 m = (150 S)’UO = Vo = Wsrn =17.35 m/s

This is not the answer for part a. This is the velocity of the ball at the time it’s at the “certain
vertical location”. But we know the ball took 0.30 s to get there while decelerating, so we can use
the second kinematics equation above to find

Vo= v+ ayt
(7.35m/s) = wp+ (—9.8 m/s?)(0.30 s)
(7.35m/s) = wo+(-294m/s) = [vg=10.29 m/s]

There are other ways to approach this problem that also give the right answer. For example, since
the ball took 0.3 s to get up to the “certain vertical location” from the ground, it’ll take that long
to get back to the ground after passing that location on the way down. So the total time the ball
is in the air from the ground to the ground is ¢ = 1.80 s+ 0.30 s = 2.10 s. The final velocity of the
ball is negative the initial velocity of the ball, v = —vg. So we can now use the second kinematics
equation to find the answer quite quickly.

v = v+ ayt
vo + (—9.8 m/s?)(2.10 s)
2058m/s = [vg=10.29 m/s]

—vp

2’()0

What is the maximum height that the ball reaches?

Solution: At the maximum height, v = 0 (the ball’s momentarily not moving up or down). We
want to find a total distance and don’t know the time, so we use the third equation to find y — yo,
the total height:

v —vg = 2ay(y —yo)
(0 m/s)? — (10.29 m/s)? = 2(—9.8 m/s*)(y — vo)
—105.8841 m?/s?
—_ = = .4 = —_
v ~19.6 m/s? [5A0m=y—w



(¢) What is the height of the “certain vertical location” that the ball passes at those times?
Solution: Here we know the time the ball takes to get to that location and its initial velocity, but
we don’t know a final velocity (how fast the ball is moving when it reaches the “certain vertical
location”). The first kinematics equation seems to be the natural one to use since it’s got distance,
time, and initial velocity in it (all known quantities) and doesn’t include the unknown quantity
of final velocity.

1 2
Y—1yy = vot—l—iayt

(10.29 m/s)(0.30 s) + %(—9.8 m/s?)(0.30 s)? = ] 2.65 m =y — Yo

2. Two Dimensional Motion: Plane Drop
A plane is diving towards the ground at an angle of § = 22° below horizontal, at an altitude of h = 3 km.
It wants to drop a freely-falling package so it lands on the ground z = 5 km ahead. Neglecting air
resistance and forces other than gravity, how fast must the plane be going when it drops the package
for the package to land in the right place?

v, = vcos(22°)

v =" - - = —vsin(22°)

h=3km e h =3 km .
!} .
" L) T "
— =5 kmm————+f o = 5 kim—

Solution: The figure above shows the vectors for this problem. In particular, we need to write
a coordinate system (x,y in the lower left) and decompose the velocity of the plane into x and y
components. Note that the vertical velocity component is negative (it points in the negative § direction,
while the horizontal velocity component is positive (it points in the positive & direction). Note that
these are really the initial components of the velocity.

Gravity is in effect, similar to the previous problem, so we know that a, = —g = —9.8 m/s? and
a; =0 m/s?.
Recall that in projectile problems, we can usually figure out the time the projectile is in the air from the

vertical motion equations if we are not given the time as part of the problem. The standard kinematic
equations with a, = 0 are:

T — xg = vosl Uy = Vo Vi — Vg =0
— g0 = voyt + ~a, 2 = + ayt 2 _wd =2a,(y —yo)
Y= Yo = voyl + 50y vy = oy + Gy v, — Vg, = 2ay(y — Yo
Here we have the vertical distance y — yo = —h = —3 km (note the negative sign; the package is going

down), the horizontal distance 2z — xg = 5 km, and the angle in the components. We don’t care about
the time, so we should try to eliminate it from our horizontal and vertical equations. Use the first

horizontal equation to find:

T3 _ 5000m _ 5393m
 wee  wcos(22°)  w

Now put this into the first vertical equation, since we know y —yg. The rest is “just” plugging in values



and careful algebra to find v:

1 2
Y—%Y = vOyt + §ayt
1
(—3000 m) = —vsin(22°)t+§(—g)t2
5393 1 5393 m\°
(=3000 m) = —vsin(22°) <m> + = (—9.8 m/s?) ( m)
v 2 v
142513800 m3 /s2
(—3000 m) = —(2020 m)— 0 m /s
v
142513800 m? /s2
(—980m) = — o /s

142513800 m? /s?
2 _ _
ve = 980 = v =381 m/s

We can convert this to miles/hr too.

3600 s 1 km 1 mile .
v= 381 m/s ( 1 hr > (1000 m> (1.61 km) = 852 mi/hr.

That’s pretty fast! What’s the time the projectile is in the air? Use the time equation that we figured
out above for this problem:

T — X0 5000 m 5393 m
t= = = =|14.15s=1t
veos(2) ~ 35T mfs

Vo

. Tensions in Wires: Dingo
An Australian Dingo, mass 30 kg, is supported by 3 massless cables as shown in the following diagram.
What are the tensions of each cable if the angles are § = 50° and ¢ = 70°7 Solution: The figure

D F=0 Y F=0
M _
T 2 M=

above shows the vectors for this problem with two different diagrams of various acting forces. In the
middle diagram, we note that there are only two forces acting on the dingo: its weight (pointing down)
and the tension T3 (pulling up). Nothing is accelerating here (the question implies that this is a statics
problem), so we know that a, = 0 m/s* and Newton’s 2nd law tells us that Y F,, = ma, = 0 for the
dingo. This gives

Y F,=0=Ts—mg = T5=mg=(30kg)(9.8m/s?) =294 N =T;

So we have one of the tensions. How do we find the others? We have to treat the knot where the three
ropes meet as an object and look at the forces on it. There are three tensions pulling it in different



directions, as s;een in the right force diagram above. We have to break those tensions down into x and
y components, and use the same Newton’s 2nd law (with a, = 0 m/s* and a, = 0 m/s?). So here we
also have ) F, =0 and ) Fy, = 0. The drawing above also shows how we can break the tensions T}
and T down into x and y components to use them in the ) F, = 0 and ) F,, = 0 equations. Note
that the T values here are all lengths of the respective sides of the triangles; we’ll get the signs of
these vectors right in the next part.

To,
sinf = 2= = Ty, =Thsin
1>
T
cos = 2 - Toy = Ty cosf
T3
T1a .
sing = e T, =Tysing
T
T
cos¢p = i QN Ty =Ticos¢
Ty

We already figured out T3 and it’s all vertical, so let’s look at the vertical equation first. We note that
T3 and T1, both point in the negative y direction, so we add them in as negative values, while T5,
points in the positive y direction so its positive:

B, =0

Toy—Ty—T5 = 0
Tocos —Ticosp—T3 = 0
Ty cos(50°) = T3+ Ty cos(70°)
0.6428 T, = 294 N+ 0.34207T;
T, = 457.38 N+ 0.532171;

We can also look at the horizontal equation, > F,, = 0:

ZFx:O

Toy =Ty = 0
Tosind —Tysing = 0
Tosinf = Tysing
T, = (Tysing/sinf) = Ti(sin(70°)/sin(50°)) = 1.227 T}

The two equations for To must be equal, so we have

12277y = 45738 N+ 0.53217T%
0.6946 Ty = 45738 N

T) = 658.5 N
Ty = 1.227T) = 1.227(658.5 N) =808 N = T}

and then




4. Friction: Slipping while Pulling
Consider two blocks being accelerated across the floor by a constant force F' pulling on the bottom,
larger block. The larger block has mass m; = 10 kg, while the smaller block has mass my = 3 kg. The
coefficient of kinetic friction between the larger block and the floor is py = 0.5, while the coefficient of
static friction between the two blocks is pus = 0.75. What is the maximum acceleration of the blocks
just before the top one slips? What is the maximum force F' that can be exerted before the top block
slips?

m m > F
2 + ng <€ 2 'L
TN —— ] v i > F

mag < i
’ Fri w T-n
miyg 1

o

Solution: This is a significantly more complicated forces problem. With multiple objects and acceler-
ation, we must treat each object individually and apply Newton’s 2nd law to each in x and y directions
to solve everything.

Consider the upper block first. It doesn’t have any other blocks resting on top of it, so it should be
easier to diagram. There are three forces acting on this block: the force of gravity (acting down), the
normal force from the block beneath it (acting up), and the force of static friction Fyo (which points
to the right). The frictional force must point to the right because the block is accelerating to the right,
and that’s the only horizontal force acting on this block! We then can see

ZFy:mgay:Ozng—mgg = ng = ma g

ZF = Moty = Fpo = psne = psmag = az = psg = (0.75)(9.8 m/s?) =|7.35 m/s* = a,

Here I have used the fact that the frictional force Fyy is the coeflicient of static friction p, times the
normal force my acting on the top block. This is the maximum acceleration that the force of static
friction can accelerate the top block.

Now consider the bottom block, which is substantially more complicated. It has the weight of the top
block acting on it as a normal force from above (ny is the Newton’s third law “equal and opposite
reaction” to the ny that was pushing up on the top block). It has its own normal force acting on it
from below, and its weight acting on it. So the total of all vertical forces gives

ZFy:mlay:0:n1—n2—mlg:n1—(m1+m2)g = ny = (my1 +ma)g

Horizontally, there are also three forces acting on it: the pulling force F' and two frictions, one from the
top block (F'y2, the Newton’s third law “equal and opposite reaction” to the Fiyo that is accelerating the
top block), and one from the floor (Fy1 = ppni = pr(mi + ms)g). We can then write down Newton’s
2nd law in the horizontal direction:

E:Fz = miay =F —Fpp— Fp1 = F — psmag — pr(mi + ma)g
F = myag + psmag + px(my +ms)g
(10 kg)(7.35 m/s?) + (0.75)(3 kg)(9.8 m/s?) + (0.5)(13 kg)(9.8 m/s?)

= [159.25 N=F




5. Frictional Inclined Plane
A block of mass m = 5.0 kg is released and slides down an incline (# = 30°) where the coefficient of
kinetic friction is g = 0.3. The block goes 5.0 m and hits an ideal spring with £ = 500 N/m. Assume
that friction is negligible while the block is being acted upon by the spring.

(a) How far does the block compress the spring?
(b) How far does the block go back up the plane on the first rebound?

n.

A
I i
Ff — 'u,i'?' g\‘”;y{'ih“ {l
\
mg| 4
mg <

g sin

Solution: This is a classic conservation of energy problem, where we are comparing a few different
situations: the initial picture, the bottom picture (where the block is compressing the spring), and the
bounce picture (where the block is at its highest point once it’s bounced back up the plane). What
energies do we need to include? We need to include gravitational potential energy (PE, = mgh)
since the height changes, energy lost to friction (sliding along a length L is PE; = uxnL), and spring
potential energy (PE; = %ka) We do not need to include kinetic energy since the block isn’t moving
in any of our pictures.

The energy lost to friction has a normal force n in it. If we draw the forces on the block, we can find
that > F, = 0 gives that n = mgcos#. So the energy lost to friction by sliding down a length L is
PEy = ppymglL cos .

If we set h = 0 at the spring, then the block’s height h above this point is related to its distance up
the plane L. The block’s height above this point is h = Lsin 0, so its gravitational potential energy is
PE,; = mgh = mgLsin6.

After the bounce, the energy lost to friction is a little more complicated. Part of it is the total
energy that was lost while sliding down the length L, which is ppmgL cos @ as found above. But we
also lose energy sliding up. If the final distance back up the plane that we bounce is Lyounce, then
we also lose energy prmgLyounce Cosf. So the total energy lost to friction in the bounce picture is
PEy = ppymg(L + Lyounce) cos 6.

We can now tabulate the energies for these various pictures and add them up to use conservation of
energy principles. Here z is the amount that the spring is compressed in the “bottom” picture.

picture PE, PEy PE; Total
initial mgLsin 0 0 0 mgLsin
bottom 0 wrmgL cos 6 %ka wremgL cos 6 + %kxg
bounce | mgLbouncesin®  prmg(L 4+ Lyounce) cos 0 mgLpounce $in 0 + ppmg(L + Lyounce) cos 0

Conservation of energy means that all items in the “Total” column are equal. Setting the initial and
bottom pictures equal, we have

1
mgLsind = pupmgLcos6 + Qkxz
1
51{:02 = mgL(sinf — py cos )
o 2mgL(sinf — py cos6)
€T =
k
\/ngL(sin 0 — g cos )
T =
k

_ [2(5.0 kg)(9.8 m/52)(5.0 m) (sin(30°) — (0.3) cos(30°)) -
.=y Lt Qe




We can also set the initial and bounce picture total energies equal and solve for Lyounce to find

mgLsin® = mgLpounce Sin6 + urmg(L + Lbounce) €0S 0
Lsind = Lyouncesin @ + (L + Lyounce) cos @
Liounce sin € + pp L cos 0 + iy, Lbounce cOs 6

Lbounce(Sine + [k COS 9)
L(sin @ — py, cos 6)

Lsin€ — ppLcos6

L
bounce sin 0 + py cos 6)

(5.0 m)(sin(30°) — (0.3) cos(30°))
sin(30°) + (0.3) cos(30°)
’ 1.58 m = Lyounce

6. Bullet Speed from Collision
To measure the speed of a bullet, the following situation is set up. A wooden block with mass mpg =
0.50 kg is put on top of a fencepost with a height of A = 1.5 m. The bullet (mass m;, = .010 kg) strikes
the block from a perfectly horizontal direction and remains embedded in it. The block is measured to
fall d = 1.6 m from the base of the post. How fast was the bullet going?

m
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Solution: This is an interesting problem in that it combines several concepts: collisions (including
conservation of momentum) and projectile motion/kinematics. We can work backwards (doing the
projectile motion part first since we know how far the block/bullet moved and fell), or we can work
forwards, doing the collision part first. I'll work through the collision part first here.

The problem states that the bullet stays embedded in the block, so this is an inelastic collision (a
“splat”), and energy is not conserved. So we cannot use conservation of (kinetic) energy to figure
out how fast the block/bullet are moving after the collision. We are left with the conservation of
momentum. We look at two pictures: the initial picture as the bullet is approaching the block, and the
final picture just after the bullet has lodged in the block and both are moving together with horizontal
velocity vg,. I call it this because it will be the initial velocity for the projectile motion part of the
problem. There is no vertical motion between these two pictures so we can treat everything using only
horizontal components.

The total horizontal momentum in the initial picture is just the momentum of the bullet, and it is
equal to the final total horizontal momentum which includes the masses of both the bullet and the
block:
mp
Pe = Mpy = (Mp +mp)ox =  Voz = |0
my +mp

Now we shift pictures and view this bullet/block combo as initially moving with this horizontal ve-
locity and figure out its projectile motion using standard projectile motion kinematics equations. I
use a standard coordinate system with +2 pointing to the right and +¢ pointing to the right; then
acceleration is just gravity pointing down, a, = —g. We figure out the time it takes to fall first. Note



that it’s falling down (in the negative direction) so y — yo = —h, and vgy, = 0m/s.

I 5
Yy—1yo = voyt+§ayt
1
b= ()4 59
2h 2(1.
po= PR 20em)
g 9.8 m/s?

Now we can use the initial horizontal velocity we figured out above to calculate how far it went
horizontally; that’s just * — zo = d, and there is no horizontal acceleration:

r—Ty = Uzt
d = Uomt
m
q = ()t
mp +mp

by = dmtmp)  (L6m)(05lkg) e
b o~ (0.01 kg)(0.55 s) ’



