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Overview 

§  Coordinate and reference systems 
§  Equations of motion in an azimuthally symmetric field 

§  e.g. betatron a particular point in time 
§  Elucidation of approximations 
§  Transverse separability 

§  Solutions of equations of motion 
§  2nd order linear ODEs as matrix equations 

§  Momentum offsets and dispersion 
§  Weak focusing synchrotron 
§  Momentum compaction 

§  Connections to orbital mechanics 
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2.1: Parameterizing Particle Motion: Coordinates 

§  Now we derive more general equations of motion 
§  We need a local coordinate system 
    relative to the design particle trajectory 

s is the direction of design particle motion 
y is the main magnetic field direction 
x is the radial direction 
    is not a coordinate, but the design 
  bending radius in magnetic field 

§  Can express total radius R as 

§  Also define local trajectory angle 

 

(x̂, ŷ, ẑ ⌘ ŝ)

⇢
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Example: MAD/madx Coordinate System 
http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.10 

Right-handed 

x̂

ŷ

ẑ

✓
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Example: MAD/madx Coordinate System 
http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.10 

Right-handed 

~r

~r = (⇢+ x)x̂+ yŷ + zẑ

x̂

ŷ

ẑ

R = ⇢+ x

R

⇢

=

✓
1 +

x

⇢

◆

✓
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2.2: Parameterizing Particle Motion: Approximations 

§  We will make a few reasonable approximations: 
0) No local currents (beam travels in a near-vacuum) 

1) Paraxial approximation: 

2) Perturbative coordinates: 

3) Transverse uncoupled linear magnetic field: 

•  Note this obeys Maxwell’s equations in free space 
4) Negligible E field: 

•  Equivalent to assuming adiabatically changing B fields 
relative to  

x, y ⌧ �

⇥B = B0ŷ + (xŷ + yx̂)

✓
�By

�x

◆

� ⇡ constant

dx/dt, dy/dt

(A0) 

(A0) 
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(A2) 

(A3) 

(A4) 

x

0
, y
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x

, p

y

⌧ p0
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Parameterizing Particle Motion: Acceleration 

§  Lorentz force equation of motion is 

§  Calculate velocity and acceleration 
     in our coordinate system 
 
 
 
 
so 
 

q⇥v ⇥ ⇥B =
d(�m⇥v)

dt
= �m⇥̇v

⇥v = Ṙx̂+R ˙̂x+ ẏŷ = Ṙx̂+R�̇ŝ+ ẏŷ

⇥̇v = R̈x̂+ (2Ṙ�̇ +R�̈)ŝ+R�̇ ˙̂s+ ÿŷ

⇥̇v = (R̈�R�̇2)x̂+ (2Ṙ�̇ +R�̈)ŝ+ ÿŷ

(A4) 
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q

R = �+ x

§  Component equations of motion 
Vertical: 

                     Horizontal:  

Parameterizing Particle Motion: Eqn of Motion 

F
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Equations of Motion 

§  Apply our paraxial and linearization approximations 

Horizontal: 
 
 
 
 
 
Vertical: 
 

(A2) (A3) (A3) 
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Things to try sometime 

§  Expand the horizontal equation of motion to second 
order in x 
§  Does it reduce to the stated equation at first order? 
§  Use expansions for R, B that are still first order! 

§  Expand the horizontal and vertical equations of 
motion to second order in x, y, δ (p. 25-6 of these slides) 

§  Use expansions for R, B that are still first order! 
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Simple Equations of Motion! 

§  These are simple harmonic oscillator equations 
(Not surprising since we linearized 2nd order differential 

equations) 
 

§  These are known as the weak focusing equations 
If n does not depend on θ, stability is only possible in both 

planes if 0<n<1 
This is known as the weak focusing criterion 
There is less than one oscillation per 2π in θ	
 

) d2x

d�2
+ (1� n)x = 0 ) d2y

d�2
+ ny = 0
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Visualization: Weak Focusing Forces 
electron velocity INTO page 

Radially opening magnet: n>0 Radially closing magnet: n<0 

accelerator 
center 

accelerator 
center 

Radially defocusing 

Vertically focusing Vertically defocusing 

Radially focusing 
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But Wasn’t 0<n<1 Stable? 

§  This seems to indicate n>0 is horizontally unstable! 
§  Horizontal motion is a combination of two forces 

“Centrifugal”               and centripetal Lorentz 
Both forces cancel by definition for the design trajectory   

mv2/R qvBy

F
tot

=
mv2

R
� qvB

y

⇡ mv2

⇥

⇣ ⇥

R

⌘
� qvB0

⇣ ⇥

R

⌘
n

= qvB0
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�
� 1

�n

◆

where � ⌘ R

⇥

� ⌘ R/⇥

F
tot

> 0 for � < 0

F
tot

< 0 for � > 0

n = 0.5

Nonlinear too! But we 
linearize near ζ=1 
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Interlude: The Betatron Again 

§  Weak focusing formalism was originally developed for the Betatron 
§  Apply Faraday’s law with time-varying current in coils 
§  Beam sees time-varying accelerating electric field too! 
§  Early proofs of stability: focusing and “betatron” motion 

I(t)=I0 cos(2πωIt) 

Donald Kerst 

UIUC 2.5 MeV 

Betatron, 1940 

UIUC 312 MeV 

betatron, 1949 

Don’t try this at home!! Really don’t try this at home!! 
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Example: The Betatron 

Faraday0s law E = �d�

dt

cylindrically symmetric 
about center vertical axis 

apply sinusoidally varying 
current to toroidal conductors 

I = I0 sin(�t)

Bave = B0 sin(�t)

I
⌅E · d⌅r = 2�RE = �d⇥

dt
= ��R2B0⇤ cos(⇤t)

Magnetic flux ⇥ ⇡ �R2Bave = �R2B0 sin(⇤t)

p/q = BgR ) F =
dp

dt
= eR

dBg

dt

Bg =
B0

2

Force on electron F = qE = �qR

2

dBave

dt
=

eRB0�

2

cos(�t)

Circular motion

Betatron Field Condition

E(t), F(t) 

I(t), B(t) 

Usable 
Part of 
Cycle 
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Example: Synchrotron Weak Focusing 

§  Separate RF cavities can eliminate the need for central 
iron (and corresponding huge inductance) 

§  Accelerator can be (much) larger (higher energies for same B0!) 

§  But stability equation scaling with ρ is still not good:  

0 < � ⇢

B0

✓
@B

y

@x

◆

x=0

< 1
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2.3: Back to Solutions of Equations of Motion 

§  Assume azimuthal symmetry (n does not depend on θ) 
§  Solutions are simple harmonic oscillator solutions 

§  Constants A,B are related to initial conditions 

) d2x

d�2
+ (1� n)x = 0 ) d2y

d�2
+ ny = 0

x(�) = A cos(�
p
1� n) +B sin(�

p
1� n)

dx

d�
=

p
1� n[�A sin(�

p
1� n) +B cos(�

p
1� n)]

(x0, x
0
0)

x0 = x(� = 0) = A x0
0 =

1

⇥

✓
dx

d�

◆
(� = 0) =

p
1� n

⇥
B

A = x0 B =
�p
1� n

x0
0
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Solutions of Equations of Motion 

§  Write down solutions in terms of initial conditions 

§  This can be (very) conveniently written as matrices 
(including both horizontal and vertical) 

x(�) = cos(�
p
1� n) x0 +

⇥p
1� n

sin(�
p
1� n) x0

0

x0
(�) =

1

⇥

dx
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= �

p
1� n

⇥
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p
1� n) x0 + cos(�

p
1� n) x0

0
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◆
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p
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p
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�
p
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p
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p
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!✓
x0
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0

◆

✓
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MV (✓1 + ✓2) = MV (✓2)MV (✓1)

Transport Matrices 

§  MV here is an example of a transport matrix 
§  Linear: derived from linear equations 

•  Can be concatenated to make further transformations 

§  Depends only on “length” θ, radius ρ, and “field” n 
•  Acts to transform or transport coordinates to a new state 
•  Our accelerator “lattices” will be built out of these matrices 

§  Unimodular: det(MV)=1 
•  More strongly, it’s symplectic: 
•  Hamiltonian dynamics, phase space conservation (Liouville) 
•  These matrices here are scaled rotations! 

✓
y(�)
y0(�)

◆
=

 
cos(�

p
n) �p

n
sin(�

p
n)

�
p
n
� sin(�

p
n) cos(�

p
n)

!✓
y0
y00

◆
= MV (�)

✓
y0
y00

◆

S = MT
V S MV where S =

✓
0 1
�1 0

◆

Note order 
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Sinusoidal Solutions, Betatron Phases 

§  Sinusoidal simple harmonic oscillators solutions 
§  Particles move in transverse betatron oscillations 

around the design trajectory 
§  We define betatron phases 

 
Write matrix equation in terms of s rather than θ 
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✓
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⇤
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Visualization of Betatron Oscillations 

§  Simplest case: constant uniform vertical field (n=0) 

 
 

§  More complicated strong focusing 

design 

cosine-like 

sine-like 

cosine-like sine-like 
x0 = 0, x0

0 6= 0 x0 6= 0, x0
0 = 0

✓ ✓

design design 
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Visualization of Betatron Oscillations, Tunes 

§  What happens for 0<n<1? 
§  Example picture below has 5 “turns” with sin(0.89 θ) 
§  The betatron oscillation precesses, not strictly periodic 
§  Betatron tune QX,Y: number of cycles made for every 

revolution or turn around accelerator 
 

design 

turn 1 
2 

3 

4 

5 

Q
x

=
1

2�

p
1� n(2�) =

p
1� n

Qy =
1

2�

p
n(2�) =

p
n

Frequency of betatron oscillations 
relative to turns around accelerator 
 

 For weak focusing: 

Q2
x

+Q2
y

= 1
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Transport Matrices: Piecewise Solutions 

§  Linear transport matrices make piecewise solutions of 
equations of motion accessible 

✓
y(�)
y0(�)

◆
=

 
cos(�

p
n) �p

n
sin(�

p
n)

�
p
n
� sin(�

p
n) cos(�

p
n)

!✓
y0
y00

◆
= MV (�)

✓
y0
y00

◆

Weak focusing

bending magnets

Drifts

“Cell”

“Cell” transport matrix:  
Mcell = M(�)Mdrift

“One turn” transport matrix:  
M

one turn

= (M(�)M
drift

)4

Build accelerator optics out of 
“Lego” transport matrices 

 (everything is awesome!) 
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Transport Matrices: Accelerator Legos 

§  With linear fields, there are two basic types of Legos 
§  Dipoles 

•  Often long magnets to bend design trajectory 
•  Entrance/exit locations can become important 
•  May or may not include focusing (“combined function”) 
•  Special case: drift when all B components are zero 

§  Quadrupoles 

•  Design trajectory is straight! (no fields at x=y=0) 
•  Act to focus particles moving off of design trajectory 
•  Special case: “thin lens” approximation 
•  We’ll talk about quadrupoles tomorrow 

⇥B = B0ŷ + (xŷ + yx̂)

✓
�By

�x

◆

(A3) 

B0 6= 0

⇥B = (xŷ + yx̂)

✓
�By

�x

◆
B0 = 0
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Transport Matrices: Dipole 

§  We have already derived a very general transport 
matrix for a dipole magnet with focusing 

§  Taking n->0 (and being careful) gives the transport 
matrix for a dipole of bend angle θ without focusing 

⇤
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Transport Matrices: Drifts 

§  For n=0, there is no horizontal field or vertical force 
§  The vertical transport matrix here is for a field-free drift 
§  This applies in both x,y planes when there is no field 

0

BB@

x(s)
x0
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y(s)
y0(s)

1
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0
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⇢ sin � cos � 0 0
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2.5: Weak Focusing Synchrotron 

§  Back to our Lego machine 
§  Pick a more symmetric cell 

§  For                “one can show”  

Drifts

“Cell”

Weak focusing

bending magnets

l0

MH = M
drift

✓
l
0

2

◆
M

dipole

⇣⇡
2

⌘
M

drift

✓
l
0

2

◆

l0 ⌧ ⇡⇢

Phase advance per cell : µH =

✓
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⇡⇢

◆
⇡
p
1� n

2

Horizontal tune : QH =
4µH

2⇡
=

✓
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⇡⇢

◆p
1� n

Vertical tune : QV =

✓
1 +

l0
⇡⇢

◆p
n

C = 2⇡⇢+ 4l0
Circumference 



T. Satogata / January 2017          USPAS Accelerator Physics 28 

Weak Focusing Synchrotron Parameterization 

§  We can write the cell transport matrix       in a form 
that is very similar to a rotation matrix 

§  We will investigate this parameterization (and its non-
periodic lattice extensions) extensively later this week 

§        is a length scale for the betatron oscillations 
§  Details in Section 2.5 derive: 

§  Note the familiar scaling with the radius of curvature    !   

MH
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✓
cosµH �H sinµH

� 1
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sinµH cosµH
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2.4: What About Momentum? 

§  So far we have assumed that the design trajectory 
particle and our particle have the same momentum 

§  How do equations change if we break this assumption? 
§  Expect only horizontal motion changes to first order 

p0 = design particle momentump = p0(1 + �) where � ⌘ �p

p0
⌧ 1

d2x

d�2
+

✓
qBy

p
R� 1

◆
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◆
R = �

R2qBy

p0
= ⇤�

d2x

d⇥2
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Add inhomogeneous term to 
original δ=0 equation of motion 

(A2) 

(A2) 

(A1) 
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Solutions of Dispersive Equations of Motion 

§  This momentum effect is called dispersion 
§  Similar to prism light dispersion in classical optics 

§  Solutions are simple harmonic oscillator solutions 
§  But now we add a specific inhomogeneous solution 

§  Constants A,B again related to initial conditions 

δ is constant 

) d2y

d�2
+ ny = 0

dx

d�
=

p
1� n[�A sin(�

p
1� n) +B cos(�

p
1� n)]

(x0, x
0
0)

d2x

d⇥2
+ (1� n)x = ⇤�

x(⇥) = A cos(⇥
p
1� n) +B sin(⇥

p
1� n) +

⇤

1� n
� inhomogeneous term! 

A = x0 �
⇥

1� n
� B =

⇥p
1� n

x0
0

(A4) 
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Solutions of Dispersive Equations of Motion 

§  Write down solutions in terms of initial conditions 

§  This can be now be “conveniently” written in terms of 
a 3x3 matrix: 

 
As usual, this can be simplified for n=0 (pure dipole) 

 Note that δ has become a “coordinate”! 
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Sector Dipole Magnets 

§  This transport matrix applies for any angle  
§  So it is also the transport matrix of any section of 

constant field, and now includes dispersion. 
§  In particular, it is the horizontal transport for a 

combined function sector dipole of length  
§  With n=0 this is the horizontal transport for a sector 

dipole of length             , bend angle   , and radius of 
curvature    

§  Sector dipole: design trajectory at entrance and exit of 
magnet is perpendicular to magnet face 
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Example: 180 Degree Dipole Magnet 
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This makes sense from p/q=Bρ! 
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2.6: Momentum Compaction 

§  Different momenta particles will have different path 
lengths              around the accelerator 

§  Naively 
§  This is not necessarily true (as we’ll see!) 

§  This is quantified by a quantity called momentum 
compaction 
§  Ratio of fractional change in pathlength to fractional 

change in momentum 

larger p ! larger ⇢ ! larger L
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Transition Energy 
§  Relativistic particle motion in a periodic accelerator (like a 

synchrotron) creates some weird effects 
§  For particles moving around with frequency     in circumference  

§  At “transition”,               and particle revolution frequency does not 
depend on its momentum  

Reminiscent of a cyclotron but now we’re strong focusing and at constant 
radius! 

    At               higher momentum gives lower revolution frequency 
     At               higher momentum gives higher revolution frequency 

 
 Hadron synchrotrons can accelerate through transition!  

!

�r > �tr

�r < �tr

electron ring 

electron linac 

C

! =
2⇡�c

C
) d!

!
=

d�

�
� dC

C
=

✓
1

�2
� 1

�2
tr

◆
�

↵p ⌘ dC

C
/� =

p

C

dC

dp
�tr ⌘

1
p
↵p

momentum compaction transition gamma 

� = �tr



T. Satogata / January 2017          USPAS Accelerator Physics 36 

Momentum Compaction: A Classic Example 

§  Consider a satellite in circular orbit 
§  A classical gravity/centripetal force problem 

F =
GMm
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Raising momentum p lowers orbit radius, raises angular frequency   !
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Momentum Compaction: Weak Focusing Synchrotron 

§  Recall 

§  Now  
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