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Overview

» Coordinate and reference systems

= Equations of motion in an azimuthally symmetric field

= e.g. betatron a particular point in time
» Elucidation of approximations
* Transverse separability

= Solutions of equations of motion
= 2nd order linear ODEs as matrix equations

* Momentum offsets and dispersion
» Weak focusing synchrotron

* Momentum compaction
= Connections to orbital mechanics

)
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2.1: Parameterizing Particle Motion: Coordinates

= Now we derive more general equations of motion

» We need a local coordinate system (2,7, 2 = §)

relative to the design particle trajectory

s is the direction of design particle motion By
y is the main magnetic field direction —— X
x is the radial direction \\\K
p is not a coordinate, but the design |

bending radius in magnetic field By

= Can express total radius R as
R=p+z| 0=2— pet
i "R R
Also define local trajectory angle
,_do  ldr  ps
~ds  RdO T po

g
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Example: MAD/madx Coordinate System

http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.10
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Example: MAD/madx Coordinate System

http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.10

— o
actua | .
orbit Right-handed
6
,--"" '” “‘"‘-m'
reference
orbit
’ p
e
/
/./ centre of
/ curvature
/ /

R . . . R T
r=(p+x)t+yy+ 22 R=p+=x ;z(l—k;)
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2.2: Parameterizing Particle Motion: Approximations

= We will make a few reasonable approximations:
mo) 0) No local currents (beam travels in a near-vacuum)

1) 1) Paraxial approximation: a:’,y’ <1 or pg,p, < po

a2) 2) Perturbative coordinates: =,y < p

@3) 3) Transverse uncoupled linear magnetic field: 98
B = Boy + (z9 + yz) (8—xy>
»0) Note this obeys Maxwell’s equations in free space
a4y 4) Negligible E field: ~ =~ constant

« Equivalent to assuming adiabatically changing B fields
relative to dx /dt, dy /dt
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Parameterizing Particle Motion: Acceleration

= Lorentz force equation of motion is

d(ymv) :
= Ymwov
dt Y (Ad)
= Calculate velocity and acceleration

In our coordinate system

q@’xéz

U = Ri + R + ) = R& + RO5 + 47
U = Ri + (2RO + RA)5 + ROs + ijy
b= bt = ——2

O ¢ = (R—RH*i+ (2RO + RO)5 + iji %

- L v A+2a‘:vA+
Vv = Xr — — h —S
7 i yy

: @&
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Parameterizing Particle Motion: Egn of Motion

= Component equations of motion

By
Vertical: F, = qBcB; = ymy Yy — ape =0
v
2
= fg 4 _fPed dy 4By g
56 dt R d6 d0? BC’WTL
dzy qB:c 2
29 R2 —
df? D 0
. _ 2
Horizontal: , 5.5 (x B %)
d’x B, R
- IR
d6? D
d*x qB,
g YR 1 —
L (L P
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Equations of Motion

= Apply our paraxial and linearization approximations

(A2) 9B (A3) 9B (A3)
p=qBop R=p 1+§ B, = By + Yl B, = )y
0 Ox Ox
d*z qB,
Horizontal: gg2 ( D = 1) f=0

d’x 1 0B, x "
— 1 14+ —1]—-1 1
d92+[<+305$ )(+p) ]p(+p) !

d’x _ p (0B,
=|l—=+ (1 —n)x =0 where n:_BO(&U)

Vertical: 02 R*=0 7 +ny =
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Things to try sometime

= Expand the horizontal equation of motion to second
order in x

= Does it reduce to the stated equation at first order?
= Use expansions for R, B that are still first order!

= Expand the horizontal and vertical equations of
motion to second order in X, Y, O (p. 25-6 of these slides)

= Use expansions for R, B that are still first order!

g
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Simple Equations of Motion!

d’x d?y
W%—(l—n)aj:() Wﬂtnyz()

* These are simple harmonic oscillator equations

(Not surprising since we linearized 2"d order differential
equations)

= These are known as the weak focusing equations

If n does not depend on 0, stability is only possible in both
planes if 0<n<1

This is known as the weak focusing criterion
There is less than one oscillation per 2x in 6

> @ JSA
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electron velocity INTO page
Visualization: Weak Focusing Forces

)Radlally openmg_magnet n>0 b Radially closmg magnet: n<0
a . '-\ .

accelerator accelerator

center center
Radially defocusing TRadiaII focusin
< Hp *4—\A—< T < >p y J
Lorentz force Lorentz force
d)

s,

B, Vertlcally defocusing

—
)
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But Wasn’t 0<n<1 Stable?

* This seems to indicate n>0 is horizontally unstable!

= Horizontal motion is a combination of two forces
“Centrifugal” mv°/R and centripetal Lorentz quB,
Both forces cancel by definition for the design trajectory

2 2
mu mu< [/ p P\ 1 1
Fiot = e — quBy ~ o (L) —quBo (L) = quBo (- — =
tot R q Y F, R q 0 R q 0 C Cn
e ~N T <=7 R
( "'.\\‘ ~\\ n = 0'5 " Whel‘e C = —
.' LN\ Lﬁ—\ l P
1 IR W :\*‘ — _g-_ \ —
\ \ ! -\‘\\\-:‘: — —é ~ | -
| t-1m \\\ | %_/7 I Fiot >0 for (<0
0 - = Fiy <0 for (>0
| !
| | J‘ Nonlinear too! But we

- T linearize near C=1
. L ¢=R/p 2 @~

5
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Interlude: The Betatron Again

Coils
— Iron yoke ) /

» Weak focusing formalism was originally developed for the Betatron
= Apply Faraday’ s law with time-varying current in coils

= Beam sees time-varying accelerating electric field too!

= Early proofs of stability: focusing and “betatron” motion

Donald Kerst
UIUC 2.5 MeV
Betatron, 1940

UlUC 312 MeV
betatron, 1949

Don’ t try this at home!! Really don’t try this at home!!
4 @ @JSA
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Example: The Betatron

apply sinusoidally varying »

current to toroidal conductors R o :
A A cylindrically symmetric
I = I Sin(wt) Bg Bave Bg ‘[ about center vertical axis
Bave = By sin(wt) Iron Magnet|

Magnetic lux ¢ ~ TR*Bawe = TR By sin(wt)

d - d
Faraday's law & = —d—qtb ]{E -dr'=27RE = —d—f = —1R?*Byw cos(wt)
R dB.ye RB
Force on electron F = qF = — 4 ki cos(wt)
2 dt 2
Circular motion dp ng / ‘\\I(t), B(t)
=B,R = F=—=eR—+ \
dt dt W \ E(), F(t)
. . Bo '
Betatron Field Condition B, = — | ,,
2 Usable
Part of
Cycle | | \ / 1

) JSA
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Example: Synchrotron Weak Focusing

» Separate RF cavities can eliminate the need for central

Iron (and corresponding huge inductance)
= Accelerator can be (much) larger (higher energies for same B,!)
= But stability equation scaling with p is still not good:

p (0B,
0 < — <1
BO ( ox ):13:0

_‘ JSA
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2.3: Back to Solutions of Equations of Motion

d’x d?y
W%—(l—n)az:O Wﬂtny:()

» Assume azimuthal symmetry (n does not depend on 6)
= Solutions are simple harmonic oscillator solutions

z(0) = Acos(0v1 —n) + Bsin(6v1 —n)

% — V1 —n[—Asin(0v/1 — n) + B cos(6v/1 — )]

» Constants A,B are related to initial conditions (zo, %)

1 [dx v1—n
ro=2x(0=0)=A xéz;(@)w:())z ; B

D JSA
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Solutions of Equations of Motion

= \Write down solutions in terms of initial conditions

2(0) = cos(6v1 —n) xg + P sin(0v'1 — n) xj

v1—n
x'(0) = 12—; __yvi-n sin(0v1 —n) xg + cos(0v1 —n) x|
p p

* This can be (very) conveniently written as matrices
(including both horizontal and vertical)

(5/((?)) _ <_ cos(6v/1 — n) ﬁsin(@ﬂ)) (wo)

VI-% in(6y/1 — n) cos(6v/1 —n) T

p

(1) = (miowm ot ) (2)

> @ JSA
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Transport Matrices
(5’(3)) N (f(i@m I(I;%ﬁ)) @2) —v® (‘ZS)

= M, here is an example of a transport matrix
» Linear: derived from linear equations
« Can be concatenated to make further transformations
Mv(91 —+ (92> — Mv(eg)Mv(el) Note order
= Depends only on “length” 6, radius p, and “field” n
 Acts to transform or transport coordinates to a new state

 Our accelerator “lattices” will be built out of these matrices

= Unimodular: det(M,,)=1
* More strongly, it's symplectic: S = M, S My where S = _01 é)
« Hamiltonian dynamics, phase space conservation (Liouville)

* These matrices here are scaled rotations!

) JSA
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Sinusoidal Solutions, Betatron Phases

()= (o= o) (@)

(1) = (emiovm ot ) ()

» Sinusoidal simple harmonic oscillators solutions

= Particles move in transverse betatron oscillations
around the design trajectory (z,2') = (y,7') =0

= We define betatron phases
bu(s) =OVT—n="VI=n  (s) =0V ="V

Write matrix equation in terms of s rather than 6
<:1:(5)> B Co8 ¢z (s) \/{Lﬁ Sin ¢z (s) (x())
z'(s)) ——le_” sin ¢ (s) oS ¢ () 0

@
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Visualization of Betatron Oscillations

= Simplest case: constant uniform verfcic;al field (n=0)

AN o
/\ ~ Z: X \\Slne-llke
z 0.4 |
A A\ % 0.2 ,'l "\
v L=/ \\ i .
g op | design
design design g o4t
T o -6 cosine-like
sine-like cosine-like 08l \\ /
/ /
Tro — 0, ,CC6 7£ 0 Lo 7é O, Ty = 0 -10 |1 ; 13 ‘.‘ § g :

» More complicated strong focusing

Horizontal Betatron Oscillation

: Vertical Betatron Oscillation
with tune: Qp = 6.3, with tune: Qy = 7.5
i.e., 6.3 oscillations per turn. 1.e., 7.5 oscillations per turn.

) . JSA
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Visualization of Betatron Oscillations, Tunes

» What happens for 0<n<1?
= Example picture below has 5 “turns” with sin(0.89 0)
= The betatron oscillation precesses, not strictly periodic
= Betatron tune Q, ,: number of cycles made for every
revolution or turn around accelerator

1

1
Q:=—V1I—n2r)=+v1-—n 0.8
2T 0.6

Qy = 5-/a(2r) = Vi

Frequency of betatron oscillations
relative to turns around accelerator

T

0.4

0.2 -

0

design

-0.2

T

horizontal displacement x

-0.4

-0.6

For weak focusing: o5

Q;+Qy =1 4

0 1 2 3 4 5 6

theta
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Transport Matrices: Piecewise Solutions

(yy’(fe))) N (fﬁ@m f(r;%ﬁ)> @9 —v® (32)

* Linear transport matrices make piecewise solutions of
equations of motion accessible

“Cell” transport matrix:
Meen = M(0) Mavist

“One turn” transport matrix:

- o
l'_k | Weak focusing Mone turn = (M (0) Mdnft)
\ \ bending magnets
\\ /// Buﬂd accelerator optics out of *\Y
O g “Lego” transport matrices \

o everything is awesome!
s “Clal]” (everything ) @ @SA
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Transport Matrices: Accelerator Legos

(A3)
= With linear fields, there are two basic types of Legos

= Dipoles _, X X (OB
B = Boy + (zg + yz) (8—;) By # 0

« Often long magnets to bend design trajectory

« Entrance/exit locations can become important

« May or may not include focusing (“combined function™)
« Special case: drift when all B components are zero

o d I _, 0B
Quadrupoles B = (xi + yi) ( &Cy) By = 0

Design trajectory is straight! (no fields at x=y=0)
Act to focus particles moving off of design trajectory
Special case: “thin lens” approximation

We’ Il talk about quadrupoles tomorrow

) JSA
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Transport Matrices: Dipole

* We have already derived a very general transport
matrix for a dipole magnet with focusing

2(s) COS () \/fi_n sin ¢, () 0 0 -
v(s)| |~ singa(s)  cosga(s) 0 0 !
y(s) | 0 0 cos ¢y, (s) % sin ¢y, (s) 10
y'(s) 0 0 —@ sin g, (s)  cosy(s) Yo

gbx(s)zﬁvl—n:%\/l—n gby(s)EQfZEﬁ

= Taking n->0 (and being careful) gives the transport
matrix for a dipole of bend angle 6 without focusing

z(s) cosf  psinfd 0 O 20
z'(s) | —% sinff cosf® 0 O T
y(s) | 0 0 1 pb Yo
y'(s) 0 0 0 1 W

P, ' JSA
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Transport Matrices: Drifts

x(s) cosf#  psinfd 0 O X0
o'(s) | —% sinf cosf O O T
y(s) | 0 0 1 pb Yo
' () 0 0 0 1) \wo

* For n=0, there is no horizontal field or vertical force
* The vertical transport matrix here is for a field-free drift
» This applies in both x,y planes when there is no field

(=) = (o 1) ()

@
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2.5: Weak Focusing Synchrotror_l ‘

g N
= Back to our Lego machine VA
£
= Pick a more symmetric cell 4 i
Field } L / L]
Jlo

| | [_“ 1 i
lo ™ - Lo il Weak focusing | =
2 2 2 \\ bending magnets ,

"-'
/ -/
= 4
s
/ .
“_/ ’/‘
—/. v-‘
— -
... . -

—

“Cell”

= For [p < mp “one can show”
Phase advance per cell : pg = (1 + bo ) mvlon Circumierence
TP 2 C' = 2mp + 4l
Horizontal tune : Qg = alis = (1 + l—0> 1—n
27 TP

[
Vertical tune : Qy = (1 + —0) Vn
Tp

D JSA
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Weak Focusing Synchrotron Parameterization

= We can write the cell transport matrix M in a form
that is very similar to a rotation matrix

COS (i Bm sin g
Mp = — L ¢in
Bn UH COS WH

= We will investigate this parameterization (and its non-
periodic lattice extensions) extensively later this week

» B is alength scale for the betatron oscillations
= Details in Section 2.5 derive:

P lo P lo
5H”m(”m> 5“’%(”@)

= Note the familiar scaling with the radius of curvature p !

D JSA
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2.4: What About Momentum?

= So far we have assumed that the design trajectory
particle and our particle have the same momentum
» How do equations change if we break this assumption?

= Expect only horizontal motion changes to first order 2
Ap

p=po(l+0) where §f = — < 1 po = design particle momentum
Po
d’x qB, d*x ( qB, )
-~ 4 (2R - — = —+ R-—1)R=0
do? +( p 8 1) fi=0 do> ~ \po(1l+9)
&z (qB, (A1)
— —(1—-90)R—1|R=0
d*z < qB, ) R?qB =
—+|—R—-1)R=9 L= pd
do> Po Po P
d’x Add inhomogeneous term to
a2 T (1 —=n)z = po original §=0 equation of motion

@
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Solutions of Dispersive Equations of Motion

d?x d?y
W%—(l—n)z:pé W%—ny:()

= This momentum effect is called dispersion "“

= Similar to prism light dispersion in classical optics

= Solutions are simple harmonic oscillator solutions
= But now we add a specific inhomogeneous solution

z(0) = Acos(0v1 —n)+ Bsin(0v1 —n) + %(5 inhomogeneous term!
— N
Z—fg VT [ Asin(0vT =) + B cos(0v/T =)

= Constants A,B again related to initial conditions (o, 2o)

) B = P :1:6
1—n 1—n

A:LUQ—

§ is constant “*

> @ JSA
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Solutions of Dispersive Equations of Motion

= \Write down solutions in terms of initial conditions

v 19— 1
x'(0) = — n sin(0v1 — n)xg + cos(0v1 — n)xy + sin(fv'1 — n)dg
p v1i—n
v1— 1
z'(0) = %fl_g — _ p n sin(6v'1 — n)xg + cos(6vV1 — n)z| + Ny sin(0v1 — n)dy

0 = dg

= This can be now be “conveniently” written in terms of
a 3x3 matrix:

<$(9)> ( cos(fv/1 —n) \/%—n sin(fv1—n) 12=[1 —cos(0v1 — n)]) (xo)
x/(@) —

——le_" sin(0v/1 — n) cos(0v/1 —n) \/11——71 sin(0v/1 —n)
0 0 1

As usual, this can be simplified for n=0 (pure dipole)
Note that § has become a “coordinate”!
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Sector Dipole Magnets

= This transport matrix applies for any angle®
= So it is also the transport matrix of any section of
constant field, and now includes dispersion.

» |n particular, it is the horizontal transport for a
combined function sector dipole of length . = p6

= With n=0 this is the horizontal transport for a sector
dipole of length L = pf, bend angle 6, and radius of

curvature p

cosf  psinf p(l — cosh)

Muipole = —% sinff cosf sin 0

0 0 1

= Sector dipole: design trajectory at entrance and exit of
magnet is perpendicular to magnet face

D JSA
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Example: 180 Degree Dipole Magnet

2(0) cos(6v1 —n) \/fl—n sin(fv1—mn) £.[1 —cos(OvV1—n)]\ [z,
0) ) = | —222sin(Av/1 —n) cos(0+v/1 —n) sin(6yv/1 —n) g
p V1i—-n
6(6) 0 0 1 00
cos@  psinf p(1 — cosb)
n=0 = Myf) = —%Siﬂ@ cos 0 sin 6
0 0 1
10 2
n=0,60=nm7 = Myg@O=|0 -1 0
0 0 1
0
For initial coordinates 0 electrons moving through uniform vertical B field
0 ® ® ©® ©
x 1 0 2\ /0 +205 U\
J o 0 1 +0 +0 ' N\ \ <)
@ ® |\ ® ®
: _ -V VN
This makes sense from p/q=Bp! P 200-dp)—" p "_2(p+dp)

> JSA
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2.6: Momentum Compaction

» Different momenta particles will have different path
lengths L = ¢ ds around the accelerator

= Naively larger p — larger p — larger L
* This is not necessarily true (as we’'ll seel!)

= This is quantified by a quantity called momentum
compaction

= Ratio of fractional change in pathlength to fractional
change in momentum
(dL/L) pdL

Qp = = — —

(dp/p) L dp

dp

recall 0 = —

p

> @ JSA
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Transition Energy

= Relativistic particle motion in a periodic accelerator (like a
synchrotron) creates some weird effects

= For particles moving around with frequency w in circumference C

2mfc dv dB dC 1 1
C w B C VP Ve
t tion «v _d0/5 p dC transiti Vir = !
momentum compaction = — — = ransition gamma " ytr — — —
P C C' dp N

= At “transition”,”Y = 7tr and particle revolution frequency does not
depend on its momentum

Reminiscent of a cyclotron but now we’re strong focusing and at constant
radius!

electronring | At v, > 7t higher momentum gives lower revolution frequency

electron linac | At v < v higher momentum gives higher revolution frequency

Hadron synchrotrons can accelerate through transition!

> JSA
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Momentum Compaction: A Classic Example

= Consider a satellite in circular orbit
= A classical gravity/centripetal force problem

P GMm _ mu?
R? R
GM
g =V w=wi=aw(gn) =g
dC dp dR/dv dv
momentum compaction &p = — / — —
GM
2v dv = ——dR - @ = __
TR %= on
momentum compaction ¢, = —2

Raising momentum p lowers orbit radius, raises angular frequency w 1A
)
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Momentum Compaction: Weak Focusing Synchrotro
- -

/"‘ _.—H"-_—i . -
" Drifts

= Recall == Bp ’
q o
dp dp dB P N\
—_— = e = 1 — | l 3
p g p i B ( + B 4 L
5= (1-nm
P Weak focusing
= Now bending magnets //
Y dp/p 0 i
y 200\
— P — (1 + —O> (1 — n)_l Circumference
C(1—n) TP C = 2mp + 4l
Horizontal tune : Qg = 45—: = <1 + 7lr_0p> V1—-n
~ —2
Qp ~ gy
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