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Overview

= Hamiltonian “refresher”
= Section 3.1: Liouville’s theorem

= Section 3.2-4: Hamiltonian refresher; Canonical
momentum, potentials, coords

= Section 3.5: Symplecticity and its consequences
= Section 3.6: Canonical coordinates revisited
= Section 3.7: Symplectic generators

This section can get mathematically tedious at times
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Classical Dynamics

» Particle motion is described by classical dynamics

= For now, assume conservative (non-dissipative) forces
are only acting on the beam

= Forces and potentials only depend on position, not
momentum: F(x,y, 2, Pz, Py, P2) = F(z,9, 2)
« E.g. external magnetic fields, internal self-fields

= Relativity holds: p'= Byme T = (pc)//p? + m2c2
= Under these conditions we can leverage much of 19t
century classical mechanics
» Phase space evaluation and conservation
= Hamiltonian approaches (conservative fields)
* |mplications of Hamilton’s equations (symplecticity)
= Canonical coordinates and transformations
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3.1: Liouville’s Theorem

» Consider particle phase space density function
f(z,y, 2,02, Py, Pz 1)

N() = [ F9.2ppy.p2it) do dy dz dp, dp, dp.
d
= \We define a 6-dimensional current, where "= 7

* |n any region of phase space, we expect continuity:

of - -
O - Jo=0

ot
df

Liouville’s Theorem: f is time-constant, or pm 0
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Liouville’s Theorem: Proof

= Consider an arbitrary spatial volume V

» Rate of change of particles N(t) inside the volume
must be equal to the negative of the total flux leaving
the volume

ON(t) O of ~ato of
ot ot v Jav = /v ot av ofaNe(t())ir?sizgg\?

I, G — _ v/ Negative of flux
B L o a5 = /V(V6 JG) av leaving volume V

6D Stokes Theorem or Continuity: a—{

*
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Liouville’s Theorem: Proof

» Partition Vs and recall J; = (f7, fF):

.- o 8 0 0 8 0
Vo= (V.V,) = (ax’ Oy’ 0z’ Op,’ Op,’ ap)
Ve Jo =V (fT)+ V,(fF)
:(ﬁf) f(§6)+(ﬁpf)ﬁ‘|‘f(ﬁpﬁ)

\_Y_I \ )
|

Vanishes since U = (]5’0)/\/]92 + m?2c?

does not depend on any position coordinates

= Be careful here: potential does not depend on p
but the magnetic part of the Lorentz force does:

— — — — — — — —

Vy F=qV, - (Ux B)=¢gB-(V, x7)—qt- (V¥ )
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Liouville’s Theorem: Proof

= S0 now let's evaluate (ﬁp x ¥) where 7= (pc)/\/p? + m2c2
= Just look at z component and use cyclicity:

S pe _ 0 Py 0 Pz
D \/p2+m262 . Op \/p2+m202 3]93, \/p2+m262

—5(2papy) —1(2pyps)

~ (2 + m2c2)3/2  (p2 + m2c2)3/2
=0
= Using cyclicity we can conclude (V, x ©) =0
= So the 6-divergence of the 6-current is

Ve Jo=(Vf) - T+ (Vpf) - F
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Liouville’s Theorem: Proof (last page!)
of

= The continuity equation was 5 + Ve Js=0

= We have shown that Ve -Js = (Vf) -7+ (ﬁpf) F

= \We want to show that d—‘]; =0

(total derivative)

df 9dfdr Ofdy 090fdz Of dp, Of dp, N of dp,  0Of

%_axdt+aydt+azdt+apx dt +0py dt ' Op. dt o
\ |\ )

— Y

(Vf)‘77 (fo)'F

df = of

a—(vf) +(Vpf) - F + 5
—0 QED
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Liouville’s Theorem: Discussion

* Liouville’s theorem here essentially states that the
phase space density of particles f acts like an
incompressible fluid

From Wikipedia

momentum p

= Assumptions: sosition 2
= Only velocity-dependent force is from Lorentz/Maxwell
« Works because this is a linear cross product force
= All other forces are from purely spatial potentials
« Potentials not assumed to be linear in position coordinates

* Liouville even applies for nonlinear magnetic fields
* Nonlinearities filament f to the point of apparent growth

= Fully special relativistic treatment (valid in all frames)

D JSA
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Liouville’s Theorem: Discussion

* These assumptions are valid for a lot of particle
distribution motion in accelerators

* Including conservative internal forces like space charge,
Intra-beam scattering, and Touschek scattering

= They are not appropriate for non-conservative or
velocity-dependent forces in accelerators
= Synchrotron radiation and radiation damping
= Beam-material interactions (foils, targets, beam-gas)
= Two-beam interactions (electron cooling, beam-beam)
= Charge-changing interactions
« E.g. Tandem Van de Graaffs, H- injection

b | | é/
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3.2-3: Canonical Momentum and Potentials

= We want to use a full canonical formalism for our
mechanics, including Hamiltonian dynamics

= Under conservative forces V x F' =0

= All forces depending only on position (and not momentum
or velocity) are conservative

» Also perform coord transformations: generating functions
» Lorentz force is not generally conservative

dp = S L

d—f — F=q(E+%xB)

but we can define a new momentum in terms of
the fields that makes a new “canonical force” that

Is conservative and obeys Hamiltonian dynamics
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Canonical Momentum
= q(Vx E+V x (¥ x B))

—

G FoTx
dt

OB [ 5 = S s s o - 3
=g +q |(B-V)7 — (5-V)B + (V- B)i — (V- 5B

ot ! ’
oB (. g} \ /

—q E —dq I ) Position derivatives of v are zero

OB OBdx OB dy OB dz

>
('\_l

U ot Torat "oy at T os dt
dB d 1= »

= - — = —— A
Tt dt{VX(q )}

= Here A is a vector potential such that B =V x A

» Rearranging and swapping differentiations, we have
- [d S -~ |dP
V x [— (ﬁ+qA)] =V X

dt dt

l

—0 where P=p+qA
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Canonical Momentum and Force

= \We can thus define a canonical momentum for

charged particle motion under the influence of the
Lorentz force:

—

P=p+qA
= This momentum has implicit dependence on position
through the vector potential

= The corresponding canonical force

L dP
Fcan E
dt

is conservative, inthat V x F.., = 0
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3.4: Hamiltonian Refresher

» Recall the Hamiltonian represents the total energy of
a system in terms of 2N variables: positions and

canonical (conjugate) momenta:
H(Z,p;t) = KE(Z, p) + PE(Z, p; t)
* Then equations of motion of the system are given by
Hamilton’s equations:

OH , OH R - -
Op, Px = _% General &£ — va p=—VH

= Example: 1D simple harmonic oscillator
2

1D 1 =

H—p——l— kx
2m
oOH oOH
_ 2P P =MmI = mu p=F=—-——=—kz
op m Ox

2 @&
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Hamiltonian Dynamics

= Can be derived from Lagrangian dynamics and principle of
least action

= Too long to go into here! See, e.g., Goldstein for details

= Central relevant points

= Hamiltonian is time-dependent function of canonical pairs
of coordinates, each a position and canonical momentum

H(xapxayapya c e ;t)
= The Hamiltonian has a physical interpretation as the total
energy of the system

= Dynamics then follow Hamilton’s equations for each pair of
canonical coordinates, e.qg.

_0]‘] . OH 0 i’:va
= o bz = — - generally .

x

g1
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Hamilton Example 1: 1D Newtonian Dynamics

_ v

H(x,pg;t) = o

+ V(x) V(x) is space — dependent potential

oH . _ 0H
dp. 7T T oz

€T =

= Hamiltonian of kinetic energy plus potential energy
gives “definition” of Newtonian momentum and
Newtonian force from potential gradient

D JSA
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Hamiltonian Example 2: 1D Relativistic Free Particl

H(xvpx;t) — ’ym02 — \/W ,YQ

1 _1_52 52

i

_ 2
1_52+1_62—1+’yﬁ

H(z,puit) = /0 + 2 F)m2 = \/p2 + mPch

oH
~ Ops

4

B PaC?
\/p202 + m2cd

_ e
yme?2  ym

= Pe = YPmc

T

x = v, = Bc

)
Jefferson Lab T. Satogata / January 2017

OH

b=

¥

Pe =10
p, 1S a constant of the motion

@&
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Relativistic Hamiltonian

= So a free particle has relativistic Hamiltonian

—

H = /p2c + m2cA p=—-VH x=V,H

* |ncluding fields generated by vector potential fY(:C
and scalar potential ¢(%,t) such that

—

B_SxA B _vqs_%j

then the Hamiltonian is given in terms of the
potentials and canonical momentum as

H = \/ﬁ A)2¢2 + m2ct + qo
A )

| !

Kinetic energy Potential energy

)
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Generating Function Refresher

= Any coordinate system transformation we apply must
be canonical (respecting Hamilton's equations)

= These ensure that coordinate and momenta remain
canonically conjugate

= Have to go into cylindrical coordinates like yesterday

» Canonical transformations are best represented with
generating functions

= Say transformation is from (Z, p) = (X, P)
* The transformation may also be time-dependent
= There are four types of generating functions, F, ,

= Each is a function of one set of old coordinates or
momenta, and one set of new coordinates or momenta

> @ JSA
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Generating Function Refresher

» Generating functions and mnemonic square:

p=0F /0% P=-0F/0X
p=0F,/0f X =0F,/0P
T=—0F;/0p P =—0F;/0X
T=—0F,/op X =0F,/0P

= Time-dependent transformations also add a total time
derivative of the generating function to the
Hamiltonian:

dF

H(Z,p:t) — H(X,P:t)+ —

D JSA
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Generating Function Examples

» Changes of coordinate or Hamiltonian scale are
trivially canonical transformations

= Essentially a change of units

» Coordinates and momenta are interchangeable

H(x,p;t) Fi(x, X) =azX
8F1 aFl
P= s = “ 0X ar

5
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Generating Function Examples

* Time-dependent simple harmonic oscillator

= For simplicity set scales so m=1, k=1

2 5132

p
H(z,p) =5 +

= pis not a constant of the motion, but we can find one!

= Transform to action-angle coordinates: (¢, J)
2

Fi(z,¢) =~ tang
OF __OR 2 o
p:%:—xtanqﬁ f J = 8¢ — 2( S€C ¢)
— /2 sin ¢ = x = V2Jcos ¢
: H .
H=1J qb—gj I J=0
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Coordinate Systems: Frenet-Serret

= We generally describe particle motion in a coordinate
system relative to a design trajectory
» Coordinates and momenta are then perturbatively
“small” displacements from this design trajectory
= Design trajectories can be arbitrarily complicated!
« But they are always differentiable and usually simple
= A general differential geometry treatment uses Frenet-
Serret formulas since the design trajectory is an
arbitrary curve in 3D Euclidian space
« sis the pathlength along the design trajectory
- T'is a unit vector tangent to the curve in the direction of s
. N is a normal vector defined by dT/ds
- B is a binormal unit vector defined by T'x N

. https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret formulas JSA
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Coordinate Systems: Frenet-Serret

4 (T 0 K 0\ (T
=% (ve] == o ][50
B'(s) 0 —7(s) 0 B(s)
k(s) : curvature = 1
| p(s)

7(s) : torsion

Curvature can be thought of as “non-linearity”
while torsion can be thought of as “non-planarity”

An excellent (long, but very general) approach with
somewhat confusing notation is given by
V. Litvinenko here

We instead follow the text and simplify a bit, T N

in particular ignoring torsion... B

3 JSA
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Review: Parameterizing Particle Motion

» Derive local Hamiltonian (excluding torsion)
= We need a local coordinate system (2,9, 2)
relative to the design trajectory

s is the direction of the design trajectory By = Boy
y is position in the B field direction —_— X

X Is position in the radial direction \\\\K

p is not a coordinate, but the design

bending radius in magnetic field By

= Can express total radius r as
s  Pct

r=p+<x Hz—zp

; . P
Also define local trajectory angle
; dx 1 dx Pz

ds pdf po
@
Jefferson Lab T. Satogata / January 2017 USPAS Accelerator Physics 25 @

X




Review: MAD/madx Coordinate System

http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.11

dr e |
aé:&%l\ nght-handed

S
el

reference
orbit

centre of
curvature

/
R . . . R T
r=(p+x)t+yy+ 22 R=p+=x ;z(l—k—)

{ R £J5A
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Example: FNAL Coordinate Systems

FERMILAB'S ACCELERATOR CHAIN

MAII\I INJECTOR

RECYCLER ™~ \
TEVATRON \ \\
/-”/"‘:f— | N N = J

[ ozeao

74 TARGET HALL

ANTIPROTON
SOURCE

N )
-/

CDF

PROTON B

-

g Antiproton Proten
-/’;__--"' 7 Direction Direction
NEUTRINO - ~_~~~ MESON —
/ /"‘
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.:leffers}on Lab

Example: CERN Coordinate Systems]

CMS

» won | 2T ' » ntap 1 P edectron P H (proton + 2 declrony)
e / conmversion P M/ COmversion
LHC  Large Madron Collider  S9% Suy Ron S I S Proton Synchrotran
AD Antproton Deoelerator CNGS Com Neutrinos 1o Gran Sasso
LEIR Low [oerey bon Rin LINAC LINecar ACovlerator  n-Tol ' | (1 ! HikadMat High-Radiation 1o Materals

T. Satogata / January 2017 USPAS Accelerator Physics

28

@&~



Coordinate Transformation

e
» Cylindrical and cartesian .
_ , y and ( are equivalent
coordinate transformation:
S y
= (p+ x) cosf N o
n=(p+mx)sind e’ N

We can then construct a generating function F5 to find
the corresponding canonical momenta in the cartesian

system — we are transforming (&, 7, Pe; Py) = (T, 8, Pa, Ps)

(9F3 aFS

fz(p+x)008(3//)):_3—m n:(p—l-a:)sin(S/P):_a—%

S .S
— F3(p€7p777x78) — —(p—I—CIZ') <p£ COS; —I—pn Sln;)

D JSA
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Coordinate Transformation

g
» Cylindrical and cartesian .
_ , y and ( are equivalent
coordinate transformation:
y
£ =(p+x)cosb S o
n=(p+x)sind 3 ‘s
S .S
— Fg(pg,pn, X, 8) — _(10 —+ ZE) (p€ COS ; —I_pn S111 ;)
OF3
Py = — . = pecost +p,sint =p, =p-2
x
OF: x
P, = _8—33 = (1+ ;) (—pesin€ + p, cos ) = (1 + %)ﬁ S

> JSA
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Curvilinear Hamiltonian

* |n the curvilinear system then

H = \/p2c? + m2c* p=—-VH x=V,H

2
Ds
B
\ Pa T Py 1+x/p

= |n terms of canonical momenta:

= H =, |m2ct* + 2

Py — qu
— _ 2 . 2 2 .2
H C\/(Px qAx) +(Py qu) +<1—|—a:/p> + m?c® 4+ q¢
where we have also defined A, = (1 + E) A0
0

), @ JSA
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Conjugate Hamiltonian

Ps_qu
1+z/p

2
H = C\/(Pa: = qAz)? + (Py — qAy)? + ( ) +m?c? +q¢

= We have one more little trick up our sleeves: it is
natural to think not of time as the independent
coordinate, but the pathlength s

= The conjugate momentum to tis —H, or the negative
of the total energy U. Then

H = —PS(CC,Px,y,Py,t,—U; S)

ot (10 D) () e g (8- 0,

P C
= This is why longitudinal coordinates are usually
naturally expressed in terms of time and energy

P,  JSA
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3.5: Symplecticity and its Consequences

= We have written a Hamiltonian for relativistic particle
motion in general EM fields

= sis “time-like” coordinate along design trajectory
= P, are true canonical momenta
H = H(LU,Px,y,Py,t,—U;S)
= The coordinates are a six dimensional phase space
column vector

X = (SC, anya Pyatv _U)T
with Hamilton’s equations

ds 0F; ds B ox;

5
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Symplectic Form

= We can write Hamilton’s equations in a nice form:

dS F Z]an
where (01 0 0 0 0
10 0 0 0 0
g_ |0 0 0 1 0 0
0 0 -1 0 0 0
0 0 0 0 0 1
\0 0 0 0 -1 0

Note a few things about S:
det S =1 S?=—-1 St=—-935 §slt=_5§
E S is like a matrix form of 7 = \/— Q

4 JSA
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Matrix Coordinate Transformation

* |nstead of writing down equations of motion from the
Hamiltonian, we can write a map M, or coordinate
transformation, from location s, to s,

Mi' —
an(So)
= The total derivative of the coordinates is then
ClXZ'(Sl) _ (‘9XZ(31) de(S()) _ ZMCZX](SO)
ds ; 0X;(sp) ds - Y ds

= Hamilton’s equations at s.:

OH an(SO>

dXz'(Sl) 8H
ds z]: jan(Sl) ;}; ](9X]€(80)\8Xj(81)
|

Definition of M <(M_1)T)jk

J

@
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Matrix Coordinate Transformation

dX;(s1) B T OH
ds %;S” ((M ) )jk 0X 1 (s0)

\ J
1

Xi(so0)

dX,(so) OH oH d
_ZslkﬁXk(So) T 9Xi(so) EZ:SM

B oy (1)), st

Transpose,inverse commute

M=-SMH1's = M'SM=S5
Matrix M is symplectic

)
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Symplecticity

MYSM =8

= Sis also symplectic since S'SS = (=S)(-I)=S
= Symplecticity implies that M is unimodular
1 =det S =det(M*SM) = (det M)* = detM = +1

= |nverse of M
S=M'SM = SSM'=8SM'S = M'=-SM'S=S"M'S

» General symplectic conjugate of a 2N-d matrix N
N=STNTS
= This is just N7 if N is symplectic
* You will derive some useful identities for M in the
homework

D JSA
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Symplecticity and Nonlinearity

* We have treated everything here using first-order
differentiation

* This is equivalent to linearizing the transport
* Hence matrices (homogeneous linear transformations)

= However, symplecticity holds even for nonlinear
transport

= M becomes Jacobian matrix of the map

* Linear map: independent of particle coordinates

* We can write general transport matrices for linear magnet
transport (drifts, dipoles, quadrupoles, linear RF, etc)

= Nonlinear maps depend on particle coordinates
* We will discuss more on nonlinear dynamics next week

> JSA
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3.6: Hamiltonian Simplifications

= Most accelerators are dominated by regions where
there are only static transverse magnetic fields

= We’'ll discuss field expansions and these magnets
more this afternoon while discussing Chapter 4

= \We have the freedom to choose vector and scalar
potential gauges such that

=0 A, =0 A, =0
which gives
P, =py =yBzmc Py =p, =yB,mc

T U\~
H=—qA;, — (14 — — —m202—pg—p5
0 c

)
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Standard Canonical Coordinates
= Rescale Hamiltonian by design momentum p,
2 2
GO O ) %)
Po Po P Poc Po p

. . . px
Paraxial approximation: — ~ — =z ~ 2 =y
Po ds po dS

= And apply one last canonical coordinate transformation
(t,—U/pg) — (2 =5 —vot, 6 = (p—po)/po)
H(CE, x/7 y? y/7 Z? 57 S) — H(x7 x/7 y? y/7 t? _U/p07 S) —|_

8F2 8F2

T UM

8F2 (t, 5; S)
0s

D JSA
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Standard Canonical Coordinates

R, OF;
Fy = Fy(t,6;s) Z—E —U/pg = ot

U
Fo =20+ F(t,s) = (s —vot)d + F(t,s) Fy = ——1t+ F(4,s)

A
£:%<1_|__U>:£(1_|_ 85)
Po Po

Fy = — ( + B50)t + s + F(s)
Bo

S s 2
F2 Bo(l—FBO)(%—t)—% + S

2
e (102) () oo 2
Do P Do 0s

) JSA
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Standard Canonical Coordinates

_c oy (S _ ) _ 57
F2_50(1+605)(Uo t) Bo "

2 .
H:—qAS—F(l—I—f) \/(£> _$/2_y/2_|_8F2(t7573)
Po p Po 0s

A
=1 —<1+§)\/1+25+52—a;'2—y’2+1+5
Do P

= Keeping lowest-order terms since we are now (in
principle) perturbative in all coordinates

A, 1 r  x0
q —|——(:1:’2+y’2)————+
po 2 p P

where all magnetic field contributions are from the
longitudinal vector field component A,

H=—

> @ JSA
Jefferson 15) T. Satogata / January 2017 USPAS Accelerator Physics 42 ‘- @



Coordinate Systems Aplenty

= Many different codes and approaches use many
different 6D coordinate systems

= E.g. Section 1.7 of the madx documentation:
(ZC,CU, pr/p()ayay, Epy/p07 = _CtapTEAE/pSC)

= \We follow C-M, which uses the same transverse
coordinates, but generally uses

5 = P — Do
Po
as a longitudinal momentum coordinate, and z as the
corresponding spatial coordinate (e.g. homework 3-6).

Often 2D and 4D subspaces are used when appropriate.

@
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Drift Transport Matrix

= So now we have nicely intuitive coordinates that are
independent in free space.:

(z,2") (v,¥") (20)

= We can write down M by inspection for a field-free
region for each of the transverse coordinates:

C%L)S ( /7(31»5’31)

SQ,CCQ) Ax = X1 — Lo
Az’ =0

()= ) G =)

Transverse transport matrix of drift of length L
(is it symplectic? What about z, §7

)
> @ @SA
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3.7: Symplectic Generators

= As we add transverse magnetic fields, we need a
general way to construct transport matrices

= Consider magnets with fields that are independent of

s for now. Recall we only need longitudinal vector
field components to describe transverse fields, so

AS — AS (l’, y)
= We can integrate a matrix generator G for infinitesimal
steps ds: M(ds) =1+ G ds

= For s-independent fields, G is constant
* |ntegrating gives us a Lie-algebra like result

M(s) = lim (I—I—G%)n — b

n—oo

1 3

> @ JSA
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Symplectic Generator: Dipole

= Consider a pure “simple” dipole field: B = By
= QOur vector potential simplification was

- > —» 1 0A 1 0A
B: A: S N . S N
VX (8y)“1+x/p< 8:6)‘”

1 [9A,
B, = By=—
v 1+x/p<3fﬂ>

_|__(33 _|_y’2)_————|—,,, From boxed eqn on slide 38
po 2 p P
B 2 o 1
H:q O(x_|_37_>_§_37__|__(x/2_|_y/2)
Po 20) p p 2

> JSA
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Symplectic Generator: Dipole

B 2 r x0 1
Po 2p pp 2
= Remember the curvature, momentum, and field are

related! po/q= Bop = qBy/po=1/p

x2 ro 1

H:__— - /2 /2
de O0H dz’ OH r 0
e — :a’/‘/ —:——:———|——
ds  Ox' ds ox 0?2 p
@:81{: ! d_y/:_a_H:Q
ds 0y Y ds 0y
:_om_ s & oH
ds 06  p ds 0z
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Symplectic Generator: Dipole

dv _OH _ o’ __9H_ z 9
ds oz ds  Ox  p? p
d_y_(‘?H_, d_y’__@_H_O
ds_(‘?y’_y ds Oy
e _OH_ e A OH_ L (ds) ()
ds 05  p ds 0z L0 P> 0
(:cl\ [ 1 ds 0 0 0 0 \ (xo\
T —ds/p* 1 0 0 0 ds/p| |z}
U1 . 0 0 1 ds 0 0 Yo
ol 0 0O 0 1 0 0 Y0
—ds/p 0 0 0 1 O 20
\ 0 0 0 0 0 1/ \&)
\ Y )
(I + G ds)
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Symplectic Generator: Dipole

02 03
I+9K+§K2+§K3+...

M(#) = lim (I+K€> — e/t
n— 00 n

63 6°
— — ...
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o @&
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Symplectic Generator: Dipole

) (92 94 5 93 95
M@)=I1+0K+ K (§—Z+...)+K (3!_5!+“’>

= I+ 0K + K?(1 —cosf) + K°(0 —sin6)

Substituting in powers of K in matrix form:

cos 0 psin 6 0 0 0 p(l—cosb) \
—% sin 6 cos 6 0 0 O sin 6
B 0 0 1 pf O 0
M(0) = 0 0 0 1 O 0
—sinf —p(l —cosf)) 0 0O 1 —p(f—sinbh)
0 0 0 0 0 .

Dipole transport matrix for coordinate system (z, 'y, Y, 2, J)

You will do a similar, but more straightforward, exercise for the solenoid in homework.
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