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Overview 

§  Hamiltonian “refresher” 
§  Section 3.1: Liouville’s theorem 
§  Section 3.2-4: Hamiltonian refresher; Canonical 

momentum, potentials, coords 
§  Section 3.5: Symplecticity and its consequences 
§  Section 3.6: Canonical coordinates revisited 
§  Section 3.7: Symplectic generators 

§  This section can get mathematically tedious at times 
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Classical Dynamics 

§  Particle motion is described by classical dynamics 
§  For now, assume conservative (non-dissipative) forces 

are only acting on the beam 
§  Forces and potentials only depend on position, not 

momentum:  
•  E.g. external magnetic fields, internal self-fields 

§  Relativity holds:  
§  Under these conditions we can leverage much of 19th 

century classical mechanics 
§  Phase space evaluation and conservation 
§  Hamiltonian approaches (conservative fields) 
§  Implications of Hamilton’s equations (symplecticity) 
§  Canonical coordinates and transformations 
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p
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3.1: Liouville’s Theorem 

§  Consider particle phase space density function 

§  We define a 6-dimensional current, where 

§  In any region of phase space, we expect continuity: 

§  Liouville’s Theorem: f is time-constant, or  
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Liouville’s Theorem: Proof 

§  Consider an arbitrary spatial volume V 
§  Rate of change of particles N(t) inside the volume 

must be equal to the negative of the total flux leaving 
the volume 

§  Now evaluate  

@N(t)

@t
=

@

@t

Z

V
f dV =

Z

V

@f

@t
dV Rate of change 

of N(t) inside V 

Negative of flux 
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6D Stokes Theorem or Continuity:  
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Liouville’s Theorem: Proof 

§  Partition       and recall                        : 

§  Be careful here: potential does not depend on p         
but the magnetic part of the Lorentz force does: 

~r6
~J6 = (f~v, f ~F )
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~r6 · ~J6 = ~r · (f~v) + ~rp(f ~F )
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Liouville’s Theorem: Proof 

§  So now let’s evaluate                 where 
§  Just look at z component and use cyclicity: 

§  Using cyclicity we can conclude 
§  So the 6-divergence of the 6-current is  
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p
p2 +m2c2
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Liouville’s Theorem: Proof (last page!) 

§  The continuity equation was 

§  We have shown that 

§  We want to show that  
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Liouville’s Theorem: Discussion 

§  Liouville’s theorem here essentially states that the 
phase space density of particles f acts like an 
incompressible fluid 

 
§  Assumptions: 

§  Only velocity-dependent force is from Lorentz/Maxwell 
•  Works because this is a linear cross product force 

§  All other forces are from purely spatial potentials 
•  Potentials not assumed to be linear in position coordinates 
•  Liouville even applies for nonlinear magnetic fields 
•  Nonlinearities filament f to the point of apparent growth 

§  Fully special relativistic treatment (valid in all frames) 

From Wikipedia 
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Liouville’s Theorem: Discussion 

§  These assumptions are valid for a lot of particle 
distribution motion in accelerators 
§  Including conservative internal forces like space charge, 

intra-beam scattering, and Touschek scattering 
§  They are not appropriate for non-conservative or 

velocity-dependent forces in accelerators 
§  Synchrotron radiation and radiation damping 
§  Beam-material interactions (foils, targets, beam-gas) 
§  Two-beam interactions (electron cooling, beam-beam) 
§  Charge-changing interactions 

•  E.g. Tandem Van de Graaffs, H- injection 
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3.2-3: Canonical Momentum and Potentials 

§  We want to use a full canonical formalism for our 
mechanics, including Hamiltonian dynamics 
§  Under conservative forces 
§  All forces depending only on position (and not momentum 

or velocity) are conservative 
§  Also perform coord transformations: generating functions 

§  Lorentz force is not generally conservative 

 but we can define a new momentum in terms of 
 the fields that makes a new “canonical force” that 
 is conservative and obeys Hamiltonian dynamics 

d~p

dt
= ~F = q( ~E + ~v ⇥ ~B)

~r⇥ ~F = 0
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Canonical Momentum 

§  Here     is a vector potential such that 
§  Rearranging and swapping differentiations, we have   
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Canonical Momentum and Force 

§  We can thus define a canonical momentum for 
charged particle motion under the influence of the 
Lorentz force: 

§  This momentum has implicit dependence on position 
through the vector potential 

§  The corresponding canonical force 

 is conservative, in that 

~P = ~p+ q ~A

~Fcan ⌘ d~P

dt
~r⇥ ~Fcan = 0
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3.4: Hamiltonian Refresher 

§  Recall the Hamiltonian represents the total energy of 
a system in terms of 2N variables: positions and 
canonical (conjugate) momenta: 

 
§  Then equations of motion of the system are given by 

Hamilton’s equations: 

§  Example: 1D simple harmonic oscillator 
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Hamiltonian Dynamics 

§  Can be derived from Lagrangian dynamics and principle of 
least action 
§  Too long to go into here! See, e.g., Goldstein for details 

§  Central relevant points 
§  Hamiltonian is time-dependent function of canonical pairs 

of coordinates, each a position and canonical momentum 

§  The Hamiltonian has a physical interpretation as the total 
energy of the system 

§  Dynamics then follow Hamilton’s equations for each pair of 
canonical coordinates, e.g. 

H(x, p
x

, y, p
y

, . . . ; t)
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Hamilton Example 1: 1D Newtonian Dynamics 

§  Hamiltonian of kinetic energy plus potential energy 
gives “definition” of Newtonian momentum and 
Newtonian force from potential gradient 
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Hamiltonian Example 2: 1D Relativistic Free Particle 
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Relativistic Hamiltonian 

§  So a free particle has relativistic Hamiltonian 

§  Including fields generated by vector potential         
and scalar potential              such that 

    then the Hamiltonian is given in terms of the      
    potentials and canonical momentum as 

~

A(~x, t)
�(~x, t)

~B = ~r⇥ ~A ~E = �~r�� @ ~A

@t

H =
q

(~P � q ~A)2c2 +m2c4 + q�

Kinetic energy Potential energy 

H =
p

p2c2 +m2c4 ~̇p = �~rH ~̇x = ~rpH
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Generating Function Refresher 

§  Any coordinate system transformation we apply must 
be canonical (respecting Hamilton’s equations) 
§  These ensure that coordinate and momenta remain 

canonically conjugate 
§  Have to go into cylindrical coordinates like yesterday 

§  Canonical transformations are best represented with 
generating functions 
§  Say transformation is from 
§  The transformation may also be time-dependent 
§  There are four types of generating functions, F1-4 
§  Each is a function of one set of old coordinates or 

momenta, and one set of new coordinates or momenta 

(~x, ~p) ) ( ~X,

~

P )
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Generating Function Refresher 

§  Generating functions and mnemonic square: 

§  Time-dependent transformations also add a total time 
derivative of the generating function to the 
Hamiltonian: 

F1(~x, ~X) : ~p = @F1/@~x
~

P = �@F1/@
~

X

F2(~x, ~P ) : ~p = @F2/@~x
~

X = @F2/@
~

P

F3(~p, ~X) : ~x = �@F3/@~p
~

P = �@F3/@
~

X

F4(~p, ~P ) : ~x = �@F4/@~p
~

X = @F4/@
~

P

~x

~X

~p~P

F1

F2 F3

F4

H(~x, ~p; t) ! H( ~X, ~P ; t) +
dF

dt
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Generating Function Examples 

§  Changes of coordinate or Hamiltonian scale are 
trivially canonical transformations 
§  Essentially a change of units 

§  Coordinates and momenta are interchangeable 
H(x, p; t) F1(x,X) =↵xX

p =
@F1

@x
= ↵X P = �@F1

@X
=� ↵x



22 T. Satogata / January 2017          USPAS Accelerator Physics 

Generating Function Examples 

§  Time-dependent simple harmonic oscillator 
§  For simplicity set scales so m=1, k=1 

§  p is not a constant of the motion, but we can find one! 
§  Transform to action-angle coordinates:  

H(x, p) =
p2

2
+

x2

2

(�, J)

F1(x,�) = �x

2

2
tan�

p =
@F1

@x

= �x tan� J = �@F1

@�

= �x

2

2
(� sec2 �)

) x =

p
2J cos�p = �

p
2J sin�

H = J �̇ =
@H

@J
= 1 J̇ = 0
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Coordinate Systems: Frenet-Serret 

§  We generally describe particle motion in a coordinate 
system relative to a design trajectory 
§  Coordinates and momenta are then perturbatively 

“small” displacements from this design trajectory 
§  Design trajectories can be arbitrarily complicated! 

•  But they are always differentiable and usually simple 
§  A general differential geometry treatment uses Frenet-

Serret formulas since the design trajectory is an 
arbitrary curve in 3D Euclidian space 

•  s is the pathlength along the design trajectory 
•      is a unit vector tangent to the curve in the direction of s 
•      is a normal vector defined by  
•      is a binormal unit vector defined by 

T̂
N̂
B̂

dT̂ /ds
T̂ ⇥ N̂

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas  
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Coordinate Systems: Frenet-Serret 

0 ⌘ d

ds

0

@
T̂ 0(s)
N̂ 0(s)
B̂0(s)

1

A =

0

@
0 (s) 0

�(s) 0 ⌧(s)
0 �⌧(s) 0

1

A

0

@
T̂ (s)
N̂(s)
B̂(s)

1

A

(s) : curvature =
1

⇢(s)

⌧(s) : torsion

Curvature can be thought of as “non-linearity” 
while torsion can be thought of as “non-planarity” 

An excellent (long, but very general) approach with 
somewhat confusing notation is given by 
   V. Litvinenko here 
 
        We instead follow the text and simplify a bit, 

 in particular ignoring torsion… 
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�B0 = B0ŷ

Review: Parameterizing Particle Motion 

§  Derive local Hamiltonian (excluding torsion) 
§  We need a local coordinate system 
    relative to the design trajectory 

s is the direction of the design trajectory 
y is position in the B field direction 
x is position in the radial direction 
    is not a coordinate, but the design 
  bending radius in magnetic field 

§  Can express total radius r as 

§  Also define local trajectory angle 

 

⇢
B0

(x̂, ŷ, ẑ)

r = ⇢+ x ✓ =
s

⇢
=

�ct

⇢

x

0 =
dx

ds

=
1

⇢

dx

d✓

⇡ p

x

p0

q
r = ⇢+ x

⇢
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Review: MAD/madx Coordinate System 
http://madx.web.cern.ch/madx/madX/doc/latexuguide/madxuguide.pdf p.11 

Right-handed 

~r

~r = (⇢+ x)x̂+ yŷ + zẑ

x̂

ŷ

ẑ

R = ⇢+ x

R

⇢

=

✓
1 +

x

⇢

◆

✓
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Example: FNAL Coordinate Systems 
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Example: CERN Coordinate Systems] 
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Coordinate Transformation 

§  Cylindrical and cartesian 
    coordinate transformation: 
 
 
 
 
We can then construct a generating function F3 to find 
the corresponding canonical momenta in the cartesian 
system – we are transforming  
 
 

✓ =

s

⇢

⇠ = (⇢+ x) cos ✓

⌘ = (⇢+ x) sin ✓

⇠ = (⇢+ x) cos(s/⇢) = �@F3

@p⇠
⌘ = (⇢+ x) sin(s/⇢) = �@F3

@p⌘

! F3(p⇠, p⌘, x, s) = �(⇢+ x)

✓
p⇠ cos

s

⇢

+ p⌘ sin
s

⇢

◆

y and ⇣ are equivalent

(⇠, ⌘, p
⇠

, p

⌘

) ! (x, s, p
x

, p

s

)
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Coordinate Transformation 

§  Cylindrical and cartesian 
    coordinate transformation: 
 
 
 
 
 
 

✓ =

s

⇢

⇠ = (⇢+ x) cos ✓

⌘ = (⇢+ x) sin ✓

P⇠ = �@F3

@x

= p⇠ cos ✓ + p⌘ sin ✓ = pr = ~p · x̂

Ps = �@F3

@s

=

✓
1 +

x

⇢

◆
(�p⇠ sin ✓ + p⌘ cos ✓) =

✓
1 +

x

⇢

◆
~p · ŝ

! F3(p⇠, p⌘, x, s) = �(⇢+ x)

✓
p⇠ cos

s

⇢

+ p⌘ sin
s

⇢

◆

y and ⇣ are equivalent
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Curvilinear Hamiltonian 

§  In the curvilinear system then 

§  In terms of canonical momenta: 

    where we have also defined 

H =
p

p2c2 +m2c4 ~̇p = �~rH ~̇x = ~rpH

) H =

vuutm2c4 + c2

"
p2
x
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y

+

✓
p
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(P
x

� qA
x
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y
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~
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Conjugate Hamiltonian 

§  We have one more little trick up our sleeves: it is 
natural to think not of time as the independent 
coordinate, but the pathlength s 

§  The conjugate momentum to t is –H, or the negative 
of the total energy U. Then 

§  This is why longitudinal coordinates are usually 
naturally expressed in terms of time and energy 

H = c

s

(P
x

� qA
x

)2 + (P
y

� qA
y

)2 +

✓
P
s

� qA
s
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3.5: Symplecticity and its Consequences 

§  We have written a Hamiltonian for relativistic particle 
motion in general EM fields 
§  s is “time-like” coordinate along design trajectory 
§  Px,y are true canonical momenta 

§  The coordinates are a six dimensional phase space 
column vector 

    with Hamilton’s equations 

H = H(x, P
x

, y, P
y

, t,�U ; s)

~

X = (x, P
x

, y, P

y

, t,�U)T

dxi

ds
=

@H

@Pi

dPi

ds
= �@H

@xi
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Symplectic Form 

§  We can write Hamilton’s equations in a nice form: 

    where 
 
 
 
 
 
Note a few things about S: 

S =

0

BBBBBB@

0 1 0 0 0 0
�1 0 0 0 0 0
0 0 0 1 0 0
0 0 �1 0 0 0
0 0 0 0 0 1
0 0 0 0 �1 0

1

CCCCCCA

det S = 1 S2 = �I ST = �S S�1 = �S

S is like a matrix form of  i =
p
�1

dXi

ds
=

X

j

Sij
@H

@Xj
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Matrix Coordinate Transformation 

§  Instead of writing down equations of motion from the 
Hamiltonian, we can write a map M, or coordinate 
transformation, from location s0 to s1 

§  The total derivative of the coordinates is then 

§  Hamilton’s equations at s1: 

Mij ⌘
@Xi(s1)

@Xj(s0)

dXi(s1)

ds
=

X

j

@Xi(s1)

@Xj(s0)

dXj(s0)

ds
=

X

j

Mij
dXj(s0)

ds

dXi(s1)

ds
=

X

j

Sij
@H

@Xj(s1)
=

X

jk

Sij
@H

@Xk(s0)

@Xk(s0)

@Xj(s1)

⇣�
M�1

�T⌘

jk
Definition of M 
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dXi(s1)

ds
= �

X

jkl

Sij

⇣�
M�1

�T⌘

jk
Skl

dXl(s0)

ds

=
X

j

Mij
dXj(s0)

ds

Matrix Coordinate Transformation 
dXi(s1)

ds
=

X

jk

Sij

⇣�
M�1

�T⌘

jk

@H

@Xk(s0)

dXl(s0)

ds
=

X

k

Slk
@H

@Xk(s0)
) @H

@Xk(s0)
= �

X

l

Skl
dXl(s0)

ds

From previous page 

M = �S(MT)�1S ) MTSM = S
Transpose,inverse commute 

Matrix M is symplectic 
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Symplecticity 

§  S is also symplectic since 
§  Symplecticity implies that M is unimodular 

§   Inverse of M 

§  General symplectic conjugate of a 2N-d matrix N 

§  This is just N-1 if N is symplectic 
§  You will derive some useful identities for M in the 

homework 

M = �S(MT)�1S ) MTSM = S

STSS = (�S)(�I) = S

1 = det S = det(MTSM) = (detM)2 ) detM = ±1

S = MTSM ) SSM�1 = SMTS ) M�1 = �SMTS = STMTS

Ñ ⌘ STNTS
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Symplecticity and Nonlinearity 

§  We have treated everything here using first-order 
differentiation 
§  This is equivalent to linearizing the transport 
§  Hence matrices (homogeneous linear transformations) 

§  However, symplecticity holds even for nonlinear 
transport 
§  M becomes Jacobian matrix of the map 
§  Linear map: independent of particle coordinates 

•  We can write general transport matrices for linear magnet 
transport (drifts, dipoles, quadrupoles, linear RF, etc) 

§  Nonlinear maps depend on particle coordinates 
•  We will discuss more on nonlinear dynamics next week 
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3.6: Hamiltonian Simplifications 

§  Most accelerators are dominated by regions where 
there are only static transverse magnetic fields 
§  We’ll discuss field expansions and these magnets 

more this afternoon while discussing Chapter 4 
§  We have the freedom to choose vector and scalar 

potential gauges such that 

    which gives 
� = 0 A

x

= 0 A
y

= 0

P
x

= p
x

= ��
x

mc P
y

= p
y

= ��
y

mc

H = �qA
s

�
✓
1 +

x

⇢

◆s✓
U

c

◆2

�m2c2 � p2
x

� p2
y
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Standard Canonical Coordinates 

§  Rescale Hamiltonian by design momentum p0 

§  And apply one last canonical coordinate transformation 

H

p0
= �qA

s

p0
�
✓
1 +

x

⇢

◆s✓
U

p0c

◆2

�
✓
mc

p0

◆2

�
✓
p
x

p0

◆2

�
✓
p
y

p0

◆2

Paraxial approximation :

p

x

p0
⇡ dx

ds

= x

0 p

y

p0
⇡ dy

ds

= y

0

(t,�U/p0) ! (z ⌘ s� v0t, � ⌘ (p� p0)/p0)

H(x, x0, y, y0, z, �; s) = H(x, x0, y, y0, t,�U/p0; s) +
@F2(t, �; s)

@s

z =
@F2

@�
� U/p0 =

@F2

@t
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Standard Canonical Coordinates 

F2 = �U

p0
t+ F (�, s)

U

p0
=

U0

p0

✓
1 +

�U

U

◆
=

c

�0
(1 + �2

0�)

F2 = � c

�0
(1 + �2

0�)t+ �s+ F (s)

F2 =
c

�0
(1 + �2

0�)

✓
s

v0
� t

◆
� s

�0

2
+ s

z =
@F2

@�
� U/p0 =

@F2

@t
F2 = F2(t, �; s)

F2 = z� + F (t, s) = (s� v0t)� + F (t, s)

H = �qAs

p0
+

✓
1 +

x

⇢

◆s✓
p

p0

◆2

� x02 � y02 +
@F2(t, �; s)

@s
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Standard Canonical Coordinates 

F2 =
c

�0
(1 + �2

0�)

✓
s

v0
� t

◆
� s

�0

2
+ s

H = �qAs

p0
+

✓
1 +

x

⇢

◆s✓
p

p0

◆2

� x02 � y02 +
@F2(t, �; s)

@s

= �qAs

p0
�
✓
1 +

x

⇢

◆p
1 + 2� + �2 � x02 � y02 + 1 + �

§  Keeping lowest-order terms since we are now (in 
principle) perturbative in all coordinates 

    where all magnetic field contributions are from the  
    longitudinal vector field component As 
 

H = �qAs

p0
+

1

2
(x02 + y02)� x

⇢
� x�

⇢
+ . . .
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Coordinate Systems Aplenty 

§  Many different codes and approaches use many 
different 6D coordinate systems 
§  E.g. Section 1.7 of the madx documentation: 

§  We follow C-M, which uses the same transverse 
coordinates, but generally uses 

    as a longitudinal momentum coordinate, and z as the 
    corresponding spatial coordinate (e.g. homework 3-6). 
 
    Often 2D and 4D subspaces are used when appropriate. 

(x, x0 ⌘ p

x

/p0, y, y
0 ⌘ p

y

/p0, T ⌘ �ct, PT ⌘ �E/p

s

c)

� ⌘ p� p0
p0
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Drift Transport Matrix 

§  So now we have nicely intuitive coordinates that are 
independent in free space: 

§  We can write down M by inspection for a field-free 
region for each of the transverse coordinates: 

(x, x0) (y, y0) (z, �)

x̂

s (s0, x0)

(s1, x1)

�x = x1 � x0

�x

0 = 0
✓
x1

x

0
1

◆
=

✓
1 s1 � s0

0 1

◆✓
x0

x

0
0

◆
) M =

✓
1 L
0 1

◆

Transverse transport matrix of drift of length L 
     (is it symplectic? What about z, δ?) 
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3.7: Symplectic Generators 

§  As we add transverse magnetic fields, we need a 
general way to construct transport matrices 

§  Consider magnets with fields that are independent of 
s for now. Recall we only need longitudinal vector 
field components to describe transverse fields, so 

§  We can integrate a matrix generator G for infinitesimal 
steps ds: 

§  For s-independent fields, G is constant 
§  Integrating gives us a Lie-algebra like result 

   where  

As = As(x, y)

M(ds) = I +G ds

M(s) = lim
n!1

⇣
I +G

s

n

⌘n
= eGs

eGs = I + (Gs) +
1

2!
(Gs)2 +

1

3!
(Gs)3 + . . .
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Symplectic Generator: Dipole 

§  Consider a pure “simple” dipole field: 
§  Our vector potential simplification was 

~B = B0ŷ

~

B = ~r⇥ ~

A =
1

1 + x/⇢

✓
@As

@y

◆
x̂+

1

1 + x/⇢

✓
�@As

@x

◆
ŷ

By = B0 = � 1

1 + x/⇢

✓
@As

@x

◆

) As = �B0

✓
x+

x

2

2⇢

◆

H =
qB0

p0

✓
x+

x2

2⇢

◆
� x

⇢
� x�

⇢
+

1

2
(x02 + y02)

H = �qAs

p0
+

1

2
(x02 + y02)� x

⇢
� x�

⇢
+ . . . From boxed eqn on slide 38 
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Symplectic Generator: Dipole 

§  Remember the curvature, momentum, and field are 
related!  

H =
qB0

p0

✓
x+

x2

2⇢

◆
� x

⇢
� x�

⇢
+

1

2
(x02 + y02)

p0/q = B0⇢ ) qB0/p0 = 1/⇢

H =
x2

2⇢2
� x�

⇢
+

1

2
(x02 + y02)

dx

ds
=

@H

@x0 = x0 dx0

ds
= �@H

@x
= � x

⇢2
+

�

⇢

dy

ds
=

@H

@y0
= y0

dy0

ds
= �@H

@y
= 0

dz

ds
=

@H

@�
= �x

⇢

d�

ds
= �@H

@z
= 0
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Symplectic Generator: Dipole 
dx

ds
=

@H

@x0 = x0 dx0

ds
= �@H

@x
= � x

⇢2
+

�

⇢

dy

ds
=

@H

@y0
= y0

dy0

ds
= �@H

@y
= 0

dz

ds
=

@H

@�
= �x

⇢

d�

ds
= �@H

@z
= 0 x

0
1 = x

0
0 �

✓
ds

⇢

2

◆
x+

✓
ds

⇢

◆
�

(I +G ds)

0

BBBBBB@

x1

x

0
1

y1

y

0
1

z1

�1

1

CCCCCCA
=

0

BBBBBB@

1 ds 0 0 0 0
�ds/⇢

2 1 0 0 0 ds/⇢

0 0 1 ds 0 0
0 0 0 1 0 0

�ds/⇢ 0 0 0 1 0
0 0 0 0 0 1

1

CCCCCCA

0

BBBBBB@

x0

x

0
0

y0

y

0
0

z0

�0

1

CCCCCCA
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Symplectic Generator: Dipole 

G ds =

0

BBBBBB@

0 ⇢ 0 0 0 0
�1/⇢ 0 0 0 0 1
0 0 0 ⇢ 0 0
0 0 0 0 0 0
�1 0 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA

ds

⇢
= K

ds

⇢
= Kd✓

M(✓) = lim
n!1

✓
I +K

✓

n

◆n

= eK✓ = I + ✓K +
✓2

2!
K2 +

✓3

3!
K3 + . . .

K2 =

0

BBBBBB@

�1 0 0 0 0 ⇢
0 �1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 �⇢ 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA
K3 =

0

BBBBBB@

0 �⇢ 0 0 0 0
1/⇢ 0 0 0 0 �1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 �⇢
0 0 0 0 0 0

1

CCCCCCA
K4 =

0

BBBBBB@

1 0 0 0 0 �⇢
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ⇢ 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA
= �K2

K5 = �K3 . . .
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Symplectic Generator: Dipole 

M(✓) = lim
n!1

✓
I +K

✓

n

◆n

= eK✓ = I + ✓K +
✓2

2!
K2 +

✓3

3!
K3 + . . .

K2 =

0

BBBBBB@

�1 0 0 0 0 ⇢
0 �1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 �⇢ 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA

K3 =

0

BBBBBB@

0 �⇢ 0 0 0 0
1/⇢ 0 0 0 0 �1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 �⇢
0 0 0 0 0 0

1

CCCCCCA
K4 =

0

BBBBBB@

1 0 0 0 0 �⇢
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ⇢ 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA
= �K2

K5 = �K3 . . .

K =

0

BBBBBB@

0 ⇢ 0 0 0 0
�1/⇢ 0 0 0 0 1
0 0 0 ⇢ 0 0
0 0 0 0 0 0
�1 0 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA

M(✓) = I + ✓K +K2

✓
✓2

2!
� ✓4

4!
+ . . .

◆
+K3

✓
✓3

3!
� ✓5

5!
+ . . .

◆
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Symplectic Generator: Dipole 

M(✓) = I + ✓K +K2

✓
✓2

2!

� ✓4

4!

+ . . .

◆
+K3

✓
✓3

3!

� ✓5

5!

+ . . .

◆

= I + ✓K +K2
(1� cos ✓) +K3

(✓ � sin ✓)

Substituting in powers of K in matrix form: 

M(✓) =

0

BBBBBB@

cos ✓ ⇢ sin ✓ 0 0 0 ⇢(1� cos ✓)
� 1

⇢ sin ✓ cos ✓ 0 0 0 sin ✓
0 0 1 ⇢✓ 0 0

0 0 0 1 0 0

� sin ✓ �⇢(1� cos ✓) 0 0 1 �⇢(✓ � sin ✓)
0 0 0 0 0 1

1

CCCCCCA

Dipole transport matrix for coordinate system  (x, x0
, y, y

0
, z, �)

You will do a similar, but more straightforward, exercise for the solenoid in homework. 


