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Overview

= Doublets and simple focusing

= 5.1: Transfer matrix approach and linear stability
= 5.2: Analytical approach

» 5.3: Emittances (revisit Friday PM)

= 5.4: Adiabatic Invariants

= 5.5: Dispersion

* 5.6: Momentum compaction

= Solutions to some problems
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Strong Focusing

= String magnets together and look at optical systems

» Real transport systems are generally made of long
repeated periods of magnet groups

= Keep beam together while getting from here to there

* Fundamental problems

= Quadrupoles (linear focusing) defocus in opposite plane
= Focusing in both planes with weak focusing is too weak

* How do we build a focusing system out of magnets and
drifts that we know about?

» Easiest analysis: string together transport matrices
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Jeffel'son Lab T. Satogata / January 2017 USPAS Accelerator Physics 3 ' @



Magnet Transport Matrix Review

o (), (0 1) ()
x’ ) 0 1/ \a .
Thick quadrupole
(g;) _ ( cos Vkl ﬁsinﬂl) (g}) (y) _ < cosh vkl ﬁsinhﬂl) (y)
x’ 0 VEksinvVkl  cosVEkl x! ) Y/, Vksinhvkl  cosh vkl v/,

(7).~ (3 (2),-(5 D0
In quadrupole — — 1
f=(kl)'>>length | z’ 2 Tl 1) \2 1 T 1) \a’ 1

Sector dipole of bend angle 6 and radius p

T cos 6 psin 6 0 0 0 p(1—cosh) T
(x’ \ /— % sin 6 cos 6 0 0 O sin 6 \ (x’ \
vyl 0 0 1 pf O 0 ()
y | 0 0 0 1 0 0 y'
2 —sinf  —p(l —cosf) 0O 0O 1 —p(f—sinb) 2

, 0 0 0 0 0 1 ) \5)
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Matrix Example: Strong Focusing

= Consider a doublet of thin quadrupoles separated by
drift L A V%

Thin quadrupole T L T

matrices \ \
1 0\ /1 L 1 0 1—f£F L

Maowlet = { 1. 1 J{g 1)l )= _17" 1 11 L
fp fr fp fr frfD fp

fr fp >0 1 11 L ( )
_ - — C&M 5.1 with fr = —fp
Jfaowret fpo fFr  fRfD
1 L
p— — :> — T o
fD fF f fdoublet f2

There is net focusing given by this alternating gradient system
A fundamental point of optics, and of accelerator strong focusing
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Strong Focusing: Another View

fr T

1 0\ /1 L 1 0 1— L L
= (56 D05 D-(5 5% 1)
fp JF fp fr frfp fp

1 — L
incoming paraxial ray (;f,) = Mioublet (a(:)()) = ( 11 f I ) o
fp JF fFrfD

For this to be focusing, x’ must have opposite sign of x where
these are coordinates of transformation of incoming paraxial ray

fr=fp <0 BUT x>0iff fr > L

Equal strength doublet is net focusing under condition that each
lens’ focal length is greater than distance between them
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Transport Matrix Stability Criteria

= For long systems (rings) we want M" (i?) stable as n — oo

0

If 2x2 M has eigenvectors (V1, V2) and eigenvalues (A1, X2):
M" (i?) = ANIVA + B3V,
0
= M is also unimodular (det M=1) so A1.2 = e~ with complex j
= For A, to remain bounded, 1t must be real

= We can always transform M into diagonal form with the
eigenvalues on the diagonal (since det M=1); this does not
change the trace of the matrix
e 4 e M =2cospu=Tr M

= The stability requirement for these types of matrices is then

1
preal = —1§§T1"M§1
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More Math: Hill’s Equation

» |et’'s go back to our quadrupole equations of motion for
R — o

1 (0B
"+Kr=0 y'-Ky=0 K= .
roae s (Bp)<f9w)

What happens when we let the focusing K vary with s?

Also assume K is periodic in s with some periodicity C
1" L 1 5’By
'+ K(s)r =0 K(S):(Bp)<8:c>(s) K(
This periodicity can be one revolution around the
accelerator or as small as one repeated “cell”
of the layout
The simple harmonic oscillator equation with a
periodically varying spring constant K(s) is
known as Hill’s Equation

Weak focusing | - {;“

bending magnet;

“Cell
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Hill’s Equation Solution Ansatz

A K(s)p=0 K= (Blp) <a£y> (s)

= Solution is a quasi-periodic harmonic oscillator

x(s) = Aw(s) cos|U(s) + Yy

where w(s) is periodic in C but the phase ¥(s) is not!!
Substitute this educated guess (“ansatz”) to find
' = Aw' cos[¥ + o] — AwP’ sin[¥ + W

"’ = A" — w¥'?) cos[¥ + Wo] — AQw' YV + w¥") sin[¥ 4+ ]

v + K(s)x = —AQuw' V' +w¥")sin(¥ + ¥g) + A(w” — w¥'? 4+ Kw) cos(¥ 4+ ¥() = 0

For w(s) and ¥(s)to be independent of Vg, coefficients
of the sin and cos terms must vanish identically
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Courant-Snyder Parameters

2 '\’ 2\11// _ 2\11/ I _ 0 — v o=
ww U+ w (w*P") 0 (5)?

w' — (B /w)+ Kw=0 = w (v +Kw)=Ek
= Notice that in both equations w?* o« k so we can

scale this out and define a new set of functions,
Courant-Snyder Parameters or Twiss Parameters

~w?(s) / 1 o) — ds
A =7 Ve NPT BE
0@=-306) | =  Eioiia
(s) = 1 +a(s)? B(s),a(s),vy(s) are all periodic in C
B(s) U(s) is not periodic in C
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Towards The Matrix Solution

= What is the matrix for this Hill's Equation solution?

x(s) = A\/B(s)cos¥(s) + B+/S(s)sin ¥(s)
dx

Take a derivative with respect to s to get z’ =

ds
U = B(ls) 2’ (s) = 51(5) {[B—a(s)A]cosVU(s) — [A+ a(s)B]sinV¥(s)}
Now we can solve for A and B in terms of initial conditions (z(0), z'(0))
20 = 2(0) = AV/B0) ) =2/ (0) = ;(0) B — a(0)A]

Wiy B— 1

5(0) 5(0)
And take advantage of the periodicity of 3, a to find z(C), 2’ (C)

A= (8(0)zy + «(0)z0]
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Hill’s Equation Matrix Solution

x(s) = A\/B(s)cos¥(s) + B+/S(s)sin ¥(s)
2(5) = —— 1B — a(s)A] cos T(s) — [A + a(s)B] sin T(s)}

B(s)
A=

Io B— 1

v B(0) v B(0)

2(C) = [cos ¥(C) + a(0) sin ¥(C)]zg + B(0) sin ¥(C)xy,
2 (C) = —~(0)sin ¥ (C)xg + [cos ¥(C) — a(0) sin ¥ (C)]x,

B(0)zo + (0)o]

We can write this down in a matrix form where ¢ = ¥ (C') — ¥(0)
is the betatron phase advance through one period C

~ [cosp+ a(0)sin p B(0) sin p T
Vaore —~(0) sin cosp —a(0)sinp) \z')
So—l—C
= / ds phase advance per cell
S0 /8(8)
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Jefferson 15) T. Satogata / January 2017 USPAS Accelerator Physics 12 @



Interesting Observations

T ~ [(cosp+ a(0)sin p B(0) sin p T
') o B —~(0) sin p cospp — a(0)sinp ) \a’)

s0tC g
= / phase advance per cell
S

o B(s)

w is independent of s: this is the betatron phase
advance of this periodic system

Determinant of matrix M is still 1!
Looks like a rotation and some scaling
M can be written down in a beautiful and deep way

M =Tcosp+Jsing I = ((1) 2) I(50) = (—av((()g) —50(4?3))

J2=—] = M= ®H
remember oy _ A, /B(s) cos[¥(s) + |
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Convenient Calculations

* |[f we know the transport matrix M, we can find the
lattice parameters (periodic in C)

T ~ [cosp+ a(0)sinp B(0) sin p T
x’ 5ot C - —(0) sin p cospt — a(0)sinp ) \ ' .

1
betatron phase advance per cell cosuy = 5 Tr M

mi2
B(0) = B(C) = Sin 1
a(0) = a(C) = o =5
_ 1+a%(0)
7(0) = 5(0)

@
Jefferson Lab T. Satogata / January 2017 USPAS Accelerator Physics 14 @



General Non-Periodic Transport Matrix

= We can parameterize a general non-periodic transport matrix
from s, to s, using lattice parameters and AV = U(sy) — ¥(s1)

M ( gﬁiii cos AW + afs1) sin AY] V/B(s1)B(s2) sin AW
S1—+S2 _ |a(s2)—a(s1)] cos AVAH[1+a(s1)a(s2)]sin AW B(s1) B
V/B(s1)B(s2) B(s3) (008 AT — a(s3) sin AV
(C&M Eqn 5.52)

» This does not have a pretty form like the periodic matrix
However both can be expressed as ;, _ (C S )
c’ s
where the C and S terms are cosine-like and sine-like;
the second row is the s-derivative of the first row!
A common use of this matrix is the m,, term:

= /B(51)B(52) SIN(AT) ' (51)| on donnsrens: sostion
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(Deriving the Non-Periodic Transport Matrix)
x(s) = Aw(s) cos ¥(s) + Bw(s)sin ¥(s)

)= 4 () conwls) - ) 1 () sinw) + )

Calculate A, B in terms of initial conditions (7o, z5)and (wo, ¥o)
o
A= (w6 sin Wo + — O) zo — (wo sin W)z

B=— (w6 cos Uy — ) zo + (wp cos ¥o)xg

. i ) 517(3) _[M11 Mi2 o
Substitute (A,B) and put into matrix form: \2/(s)) = \ma1  mas ) \2),

mi1(s) = wu(]s) cos AU — w(s)wg sin AW AT = T(s) — T,
mi2(s) = w(s)wy sin AW w(s) = +/B(s)

1+ w(s)wow'(s)wy sin — w — w(s) COS
moq (S) w<8>w0 AW [w(s) wo ] AWV

Moz (s) = wuzZ) cos AW + wow' sin AW
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Non-Periodic Transport Matrix

= C-M 5.52, a very general form from all that math:

Ve \W[COS w(s) + g sin pu(s)] BoB(s)sin p(s)
s) = i
_ [a(s)—ag] cos ,LL(S)B—IO-E(—:)&O@(S)] sin u(s) 55(0) [COS :u( ) a(S) sin ,LL(S)]

= This is how one can parameterize uncoupled x ory
transport from one location s, to another location s
where the Twiss parameters of those locations and
their relative phase advance is known

« Such as from a table from a modeling code like madx
* Most modeling codes can also output matrix elements
between specific locations at starts or ends of magnets
 This still follows the (C S ; C’ S’) matrix form!
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Review
Hill's equation 2" + K(s)z = 0
quasi — periodic ansatz solution x(s) = A+/B(s) cos|¥(s) + Vg

1+ a(s)?
B(s)=B(s+C) ~(s) = B?s()S)
1
a5 =30 v = [ 57
(:1:) B (Cosu+oz(0)sinu B(0) sin p ) (x)
x’ e B —(0) sin p cosp — a(0)sinp ) \ ' .
betatron phase advance = / e % Tr M = 2cos u

M=Tcosp+Jsing I= ((1) (D I(50) = (—av(?(% 6(0())))

. JP=—1 = M= Ok G £55A
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(Lunch break)
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Lattice Optics: FODO Lives!

cell

G [

= Most accelerator lattices are designed in modular ways
= Design and operational clarity, separation of functions

* One of the most common modules is a FODO module
= Alternating focusing and defocusing “strong” quadrupoles
= Spaces between are combinations of drifts and dipoles
= Strong quadrupoles dominate the focusing

= Periodicity is one FODO “cell” so we’ll investigate that
motion

» Horizontal beam size largest at centers of focusing quads
Vertical beam size largest at centers of defocusing quads

=

@
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Periodic Example: FODO Cell Phase Advance

cell

)L () )0 4h )|

—2f L/2 f LJ/2 —2f

» Select periodicity between centers of focusing quads
= A natural periodicity if we want to calculate maximum {(s)

06 DE 6 D0

1_L_2 L_2_|_L L2
M=1 ;- 8f2L s 72 Ir M =2cosp=2—- —
673 4z L g 4f

1——:cosu:1—281n2g = Sinﬁzzlz—

2 4f
= 1 only has real solutions (stability) if % < f
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Periodic Example: FODO Cell Beta Max/Min

cell

)L () )0 4h )|

—2f L/2 f LJ)2 —2f
= What is the maximum beta function, 3 ?

= A natural periodicity if we want to calculate maximum {(s)

_ L 1L
163 4f2 8f2

- L? L - L .
Bsm,u—HJrL—L(l—Fsmg) B_Sin,u (1—|—Sm§)

= Follow a similar strategy reversing F/D quadrupoles to find
the minimum f(s) within a FODO cell (center of D quad)

< L
b= — (1 — sin H)
sin 4 2
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FODO Betatron Functions vs Phase Advance

12
10
E
-
3 8
(4]
E|
©
2 6
)
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EI 4
©
©
0

.}effers%n Lab

| | | | | | | |
beta_max/L ———
beta_min/L ———
m/
&
&
©
8
o
2
Generally want S/L small ®
Strong focusing =
Smaller magnets
Less expensive accelerator
| | | | I i } I
20 40 60 80 100 120 140 160
Phase advance/cell [ded]
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FODO Beta Function, Betatron Motion

R '
Betatron motion
trajectory /\
N
D AN
D design trajectory

F
DFDF\ gD /FDFDFDF\FD (C&M Fig. 5.3)
7

* This is a picture of a FODO lattice, showing contours ofi\/
since the particle motion goes like z(s) = A/ 5(s) cos[¥(s) + \po]

= This also shows a particle oscillating through the Iattlce
= Note that \/5(s) provides an “envelope” for particle oscillations

- VB(s) is sometimes called the envelope function for the
lattice

= Min beta is at defocusing quads, max beta is at focusing quads
= 6.5 periodic FODO cells per betatron oscillation
= u = 360°/6.5 ~ 55°
> | @@JSA
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150

! . . . . J ]
- i low-beta insertion low-beta insertion;; 3
125 — 1“, \ i
E, - 3
c 100 (] _ T =
2 -y Horizontal | | Vertical : matching [ }| 3
s 75— __ T N
i - ? Ilt I‘. FODO &lﬁ Jf ‘I -
) — v noof -
== — ol . N s a oyt ! ]
@:(:' 50 E ) : rji ;‘1“ 1" rl &1 ’:,t:. ! ,( II.'-:] I' |’l .(l lI I| '. |] | H ; E
25: \» ) r‘, , | ‘Jl'., A h lf",f VA AR A A :
1r lU' I‘.Jr ]V" 'J "J’ \'." 1.," "'1" l‘ll l'.; I"J’ M o

0 I O O O | I | N I | I | N T N | I | N I | I N T I I I | I | N el | I 11 1]

0 100 200 300 400 500 600

S coordinate [m)]

= 1/6 of one of two RHIC synchrotron rings, injection lattice
= FODO cell length is about L=30 m
= Phase advance per FODO cell is about 1 = 77° = 1.344 rad

A L
b= — (1—|—Sinﬁ)z53m
sin [ 2
. L L4 @
B= - (1—Sin—)%8.7m
sin [ 2

3 JSA
Jefferson 15) T. Satogata / January 2017 USPAS Accelerator Physics 25 @ @



Propagating Lattice Parameters

= If | have (8,a,7)(s1) and | have the transport matrix M (s, s)
that transports particles from s; — s, how do | find the
new lattice parameters (5, o, v)(s2)?

M(s1,81 +C) =1Tcosp+ Jsinpy= COSLL—FOé(S%)SlIl/UL ﬁ(sl)sm,u. _ (mu mao
_V(Sl)snl:u COS,U—OZ(Sl)Sln,u mo1 Moo

Homework ©

m3, —2my1mi2 mi B(s1)
= | —mi1m21 Mi11Ma2 + Mi12Ma1 —1M12M22 a(s1)

m21 —2m21m22 m22
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Propagating Lattice Parameters

= If | have (8,a,7)(s1) and | have the transport matrix M (s, s)
that transports particles from s; — s, how do | find the
new lattice parameters (5, o, v)(s2)?

M(s1,81+C)=1Icosp+ Jsinpy = (COS:LL + a(s1) sin p B(s1) sin u ) _ (m11 m12)

—(s1) sin i cos it — a(s1) sin Mo1 M99
The J(s) matrices at s, s, are related by __,/-//’,,,;;‘\\__z
/ e \\
J(s3) = M(s1,52)J(s1)M (51, 52) // \ N\
f f \ '\'
Then expand, using det M=1 B ) |
\,\ \/"',(\ - ) ) / 'j"
\\\\ ~ : ’,/"" /
Your homework is to then show... AN\
B(s2) mi; —2mi1mi2 miy B(s1)
« 82) = | —mai1mo1 Mmii1Mmo2 + Mi2M21 —M12M22 06(81)
S9) maq —2ma1ma2 M3, v(51)

> @ JSA
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02 + - 02 -
01 - 01 2
T - . =) =
© © e
E , 2, E 0 E O
< %o % ° . -
01 F - 01 } 2
02 - 02 4
-4 -2 0 2 4 4 2 0 2 4 4 -2 0 2 4
X [mm], step=0 y [mm], step=0 x [mm], step=0

1 1 1 1 1
0 20 40 60 80 100 120
s coord [m]

* Area of an ellipse that envelops a given percentage of the
beam particles in phase space is related to the emittance

We can express this in terms of our lattice functions!
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Jefferson 15) T. Satogata / January 2017 USPAS Accelerator Physics 28 @ @




Invariants and Ellipses

= A+/B(s) cos[p(s) + ¢o]

= We assumed A was constant, an invariant of the motion
A can be expressed in terms of initial coordinates to find
W = A% = yox3 + 209z07h + Boxl
This is known as the Courant-Snyder invariant: for all s,
W = 7(s)z(s)” + 2a(s)z(s)a’(s) + B(s)’(s)*
Similar to total energy of a simple harmonic oscillator
W looks like an elliptical area in (z, z") phase space
Our matrices look like scaled rotations (elllpses) In phase space

0.2 s=sg 1T s= sO+C i s= so+2C i s= so+3C

x' [mrad)]

1 1 1 L L 1 1 L L L 1 1 L L L 1 1 L L L
-4 -2 0 2 4 -4 -2 0 2 B -4 -2 0 2 B -4 -2 0 2 B
x [mm]), step=14 x [mm], step=14 x [mm], step=14 x [mm], step=14
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Emittance

» The area of the ellipse inscribed by any given particle in
phase space as it travels through our accelerator is called
the emittance €: it is “constant” and given by

e =W = 7[y(s)x(5)? + 2a(s)z(s)x’(s) + B(s)x'(5)?]

Emittance is often quoted as the area of the ellipse that would
contain a certain fraction of all (Gaussian) beam particles

e.g. RMS emittance contains 39% of 2D beam particles
Related to RMS beam size orwmsS
orMs = V €8(s) ot |

RMS beam size depends on s! £ ol

RMS emittance convention is fairly standard R
for electron rings, with units of mm-mrad x[mm), step=14
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Adiabatic Damping and Normalized Emittance

= But we introduce electric fields when we accelerate
= \When we accelerate, invariant emittance is not invariant!
. . /
We are defining areas in (z,x") phase space

The definition of x doesn’t change as we accelerate
But ' = dx/ds = p./Po does since Po changes!
= Po scales with relativistic beta, gamma: Po X By

o This has th{e effect of compressing x’ phase space by 57

02 -

01

0k

x' [mrad)]

A [mrad)

01 F

02 + ’ 4 ' . R . . . 4 -
) 4 - 0 > 4 x [mm], step=14

x [mm], step=14
= Normalized emittance is the invariant in this case N = Bye

unnormalized emittance goes down as we accelerate
This is called adiabatic damping, important in, e.g., linacs
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Phase Space Ellipse Geography
T —

01

0

x' [mrad]

CM Fig 5.2
01

02

x1 x2
1 | |
-4 -2 0 2

x [mm], step=14

-

4

= Now we can figure out some things from a phase
space ellipse at a given s coordinate:

r1 =V W/y(s) To =

Y1 = \/W/B(S)

.}effers)on Lab
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Rings and Tunes

» A synchrotron is by definition a periodic focusing system
= [tis very likely made up of many smaller periodic regions too
= We can write down a periodic one-turn matrix as before

0 1

M = Icos i+ J sin 12(1 0) J(SO)E(a«n 6(0)>

= We define tune as the total betatron phase advance in one
revolution around a ring divided by the total angle 27
Apg o 1 ds
Qa},y p— p—
A6 21 | Bry(s)

Horizontal Betatron Oscillation
with tune: Qy, = 6.3, with tune: Qy = 7.5,

i.e., 6.3 oscillations per turn. i.e., 7.5 oscillations per turn.
2 @&
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Tunes

= There are horizontal and vertical tunes
= turn by turn oscillation frequency

= Tunes are a direct indication of the amount of focusing in
an accelerator

= Higher tune implies tighter focusing, lower (3, ,(5))

= Tunes are a critical parameter for accelerator performance
= Linear stability depends greatly on phase advance
= Resonant instabilities can occur when n(Q), + mQ), = k
= Often adjusted by changing groups of quadrupoles

Mone turn = I cos(27Q) + J sin(27Q)
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6.2: Stability Diagrams

= Designers often want or need to change the focusing
of the two transverse planes in a FODO structure

= What happens if the focusing/defocusing strengths
differ? -

O D ) ) )

—2fr L/2 fp L/2 —2fF

= Recalculate the M matrix and use dimensionless

quantities P L L
- 2fF -~ 2fp
then take the trace for stability conditions to find

FD FD F—-D
cos,uzlJrD—F—7 sian: 0 4 5

@
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Stability Diagrams I

FD ,u FD F-D

COSM:1—|—D F—T SIH§ 1 -+ 9

» For stability, we must have —1 < cospu < 1
= Using cosp =1—2sin? g stability limits are where

2H:O nzﬂ 1

Sin S1

* These translate to a FODO “necktie” stability diagram

2
unstabl
stable
D L
unstable
o F 2

Figure. 6.1 Stability or “necktie” diagram for an alternate focusing lattice. The shaded area is the

region of stability.

)
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Onwards to the computer lab...

Introduction to MAD-X

G. Sterbini, CERN
Thanks to W. Herr and B. Holzer

14 January 2014, Archamps
And T. Satogata at USPAS 2017

http://indico.cern.ch/event/286275/contributions/651708/attachments/531417/732835/juas.pdf

http://toddsatogata.net/2017-USPAS/lab/lab1.pdf
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