
T. Satogata / January 2017          USPAS Accelerator Physics 1 

USPAS Accelerator Physics 2017 
 University of California, Davis 

 
Chapter 5: Strong Focusing 

Todd Satogata (Jefferson Lab and ODU) / satogata@jlab.org 
Randika Gamage (ODU) / bgama002@odu.edu  

http://www.toddsatogata.net/2017-USPAS 
 

Happy Birthday to Yoichiro Nambu, Paul Ehrenfest, AA Milne, and Cary Grant! 
Happy National Peking Duck Day, Thesaurus Day, and Winnie the Pooh Day! 

 

 



T. Satogata / January 2017          USPAS Accelerator Physics 2 

Overview 

§  Doublets and simple focusing 
§  5.1: Transfer matrix approach and linear stability 
§  5.2: Analytical approach 
§  5.3: Emittances (revisit Friday PM) 
§  5.4: Adiabatic Invariants 
§  5.5: Dispersion 
§  5.6: Momentum compaction 
§  Solutions to some problems 
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Strong Focusing 

§  String magnets together and look at optical systems 
§  Real transport systems are generally made of long 

repeated periods of magnet groups 
§  Keep beam together while getting from here to there 

§  Fundamental problems 
§  Quadrupoles (linear focusing) defocus in opposite plane 
§  Focusing in both planes with weak focusing is too weak 

§  How do we build a focusing system out of magnets and 
drifts that we know about? 
§  Easiest analysis: string together transport matrices 
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Magnet Transport Matrix Review 
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Matrix Example: Strong Focusing 

§  Consider a doublet of thin quadrupoles separated by 
drift L 

 

 
There is net focusing given by this alternating gradient system 
A fundamental point of optics, and of accelerator strong focusing 
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Strong Focusing: Another View 

For this to be focusing, x’ must have opposite sign of x where 
these are coordinates of transformation of incoming paraxial ray 

 
Equal strength doublet is net focusing under condition that each 

lens’ focal length is greater than distance between them 
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Transport Matrix Stability Criteria 

§  For long systems (rings) we want               stable as 

§  If 2x2 M has eigenvectors             and eigenvalues             : 

§  M is also unimodular (det M=1) so                   with complex 
§  For        to remain bounded,    must be real 

§  We can always transform M into diagonal form with the 
eigenvalues on the diagonal (since det M=1); this does not 
change the trace of the matrix 

§  The stability requirement for these types of matrices is then 
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More Math: Hill’s Equation 

§  Let’s go back to our quadrupole equations of motion for 

What happens when we let the focusing K vary with s? 
Also assume K is periodic in s with some periodicity C 
 
 
This periodicity can be one revolution around the 
 accelerator or as small as one repeated “cell” 
 of the layout 
The simple harmonic oscillator equation with a 

 periodically varying spring constant K(s) is 
 known as Hill’s Equation 
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Hill’s Equation Solution Ansatz 

§  Solution is a quasi-periodic harmonic oscillator 

 
where w(s) is periodic in C but the phase Ψ(s) is not!! 
Substitute this educated guess (“ansatz”) to find 
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Courant-Snyder Parameters 

§  Notice that in both equations               so we can 
scale this out and define a new set of functions, 
Courant-Snyder Parameters or Twiss Parameters  
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Towards The Matrix Solution 

§  What is the matrix for this Hill’s Equation solution? 

 

Take a derivative with respect to s to get  x0 ⌘ dx

ds
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Hill’s Equation Matrix Solution 

A =
x0p
⇥(0)

B =
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Interesting Observations 

§      is independent of s: this is the betatron phase 
advance of this periodic system 

§  Determinant of matrix M is still 1! 
§  Looks like a rotation and some scaling 
§  M can be written down in a beautiful and deep way 
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Convenient Calculations 

§  If we know the transport matrix M, we can find the 
lattice parameters (periodic in C) 
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General Non-Periodic Transport Matrix 

§  We can parameterize a general non-periodic transport matrix 
from s1 to s2 using lattice parameters and  

§  This does not have a pretty form like the periodic matrix 
However both can be expressed as 
 
where the C and S terms are cosine-like and sine-like; 

the second row is the s-derivative of the first row! 
A common use of this matrix is the m12 term: 
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(Deriving the Non-Periodic Transport Matrix) 

 
Calculate A, B in terms of initial conditions             and 
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Non-Periodic Transport Matrix 

§  C-M 5.52, a very general form from all that math: 

§  This is how one can parameterize uncoupled x or y 
transport from one location s0 to another location s 
where the Twiss parameters of those locations and 
their relative phase advance is known 

•  Such as from a table from a modeling code like madx 
§  Most modeling codes can also output matrix elements 

between specific locations at starts or ends of magnets 
•  This still follows the (C S ; C’ S’) matrix form! 
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Review 
Hill0s equation x
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(Lunch break) 
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Lattice Optics: FODO Lives! 

§  Most accelerator lattices are designed in modular ways 
§  Design and operational clarity, separation of functions 

§  One of the most common modules is a FODO module 
§  Alternating focusing and defocusing “strong” quadrupoles 
§  Spaces between are combinations of drifts and dipoles 
§  Strong quadrupoles dominate the focusing 
§  Periodicity is one FODO “cell” so we’ll investigate that 

motion 
§  Horizontal beam size largest at centers of focusing quads 
§  Vertical beam size largest at centers of defocusing quads 

cell 
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Periodic Example: FODO Cell Phase Advance 

§  Select periodicity between centers of focusing quads 
§  A natural periodicity if we want to calculate maximum β(s) 

§       only has real solutions (stability) if  
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Periodic Example: FODO Cell Beta Max/Min 

§  What is the maximum beta function,    ?  
§  A natural periodicity if we want to calculate maximum β(s) 

§  Follow a similar strategy reversing F/D quadrupoles to find 
the minimum β(s) within a FODO cell (center of D quad) 
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FODO Betatron Functions vs Phase Advance 

Generally want     /L small 
  Strong focusing 
  Smaller magnets 
  Less expensive accelerator 
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FODO Beta Function, Betatron Motion 

§  This is a picture of a FODO lattice, showing contours of 
since the particle motion goes like 
§  This also shows a particle oscillating through the lattice 
§  Note that            provides an “envelope” for particle oscillations 

•             is sometimes called the envelope function for the 
lattice 

§  Min beta is at defocusing quads, max beta is at focusing quads 
§  6.5 periodic FODO cells per betatron oscillation 

±
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Example: RHIC FODO Lattice 

§  1/6 of one of two RHIC synchrotron rings, injection lattice 
§  FODO cell length is about L=30 m 
§  Phase advance per FODO cell is about  
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Propagating Lattice Parameters 

§  If I have                   and I have the transport matrix       
that transports particles from            , how do I find the 
new lattice parameters                  ? 
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Propagating Lattice Parameters 

§  If I have                   and I have the transport matrix       
that transports particles from            , how do I find the 
new lattice parameters                  ? 

 
The J(s) matrices at s1, s2 are related by 
 
Then expand, using det M=1 
 
Your homework is to then show… 
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========== What’s the Ellipse? ========== 

§  Area of an ellipse that envelops a given percentage of the 
beam particles in phase space is related to the emittance 
  We can express this in terms of our lattice functions! 
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Invariants and Ellipses 

§  We assumed A was constant, an invariant of the motion 
A can be expressed in terms of initial coordinates to find 
 
This is known as the Courant-Snyder invariant: for all s, 
 
Similar to total energy of a simple harmonic oscillator 
      looks like an elliptical area in           phase space 
Our matrices look like scaled rotations (ellipses) in phase space 
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p
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Emittance 

§  The area of the ellipse inscribed by any given particle in 
phase space as it travels through our accelerator is called 
the emittance    : it is “constant” and given by 

Emittance is often quoted as the area of the ellipse that would 
contain a certain fraction of all (Gaussian) beam particles 

e.g. RMS emittance contains 39% of 2D beam particles 
Related to RMS beam size 
 
    RMS beam size depends on s!  
 
RMS emittance convention is fairly standard 
    for electron rings, with units of mm-mrad 

⌅ = ⇧W = ⇧[⇤(s)x(s)2 + 2�(s)x(s)x0(s) + ⇥(s)x0(s)2]

✏

�RMS

⇤RMS =
p
⇥�(s)
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Adiabatic Damping and Normalized Emittance 

§  But we introduce electric fields when we accelerate 
§  When we accelerate, invariant emittance is not invariant! 
§  We are defining areas in            phase space 
§  The definition of x doesn’t change as we accelerate 
§  But                                    does since      changes! 
§       scales with relativistic beta, gamma: 
§  This has the effect of compressing x’ phase space by 

 
 
§  Normalized emittance is the invariant in this case 

unnormalized emittance goes down as we accelerate 
This is called adiabatic damping, important in, e.g., linacs 

(x, x0)

x

0 ⌘ dx/ds = p

x

/p0 p0
p0 p0 / �⇥

��

✏N ⌘ ��✏



T. Satogata / January 2017          USPAS Accelerator Physics 32 

Phase Space Ellipse Geography 

§  Now we can figure out some things from a phase 
space ellipse at a given s coordinate: 

x2 x1 

y1 
y2 

x1 =
p

W/�(s) x2 =
p

W�(s)

y1 =
p
W/�(s) y2 =

p
W�(s)

CM Fig 5.2 
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Rings and Tunes 

§  A synchrotron is by definition a periodic focusing system 
§  It is very likely made up of many smaller periodic regions too 
§  We can write down a periodic one-turn matrix as before 

§  We define tune as the total betatron phase advance in one 
revolution around a ring divided by the total angle 2⇡

M = I cosµ+ J sinµ I =

✓
1 0

0 1

◆
J(s0) ⌘

✓
�(0) ⇥(0)
�⇤(0) ��(0)

◆

Q
x,y

=
�µ

x,y

�⇥
=

1

2⇤

I
ds

�
x,y

(s)
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Tunes 

§  There are horizontal and vertical tunes 
§  turn by turn oscillation frequency 

§  Tunes are a direct indication of the amount of focusing in 
an accelerator 
§  Higher tune implies tighter focusing, lower 

§  Tunes are a critical parameter for accelerator performance 
§  Linear stability depends greatly on phase advance 
§  Resonant instabilities can occur when 
§  Often adjusted by changing groups of quadrupoles 

h�
x,y

(s)i

nQ
x

+mQ
y

= k

M
one turn

= I cos(2�Q) + J sin(2�Q)
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6.2: Stability Diagrams 
§  Designers often want or need to change the focusing 

of the two transverse planes in a FODO structure 
§  What happens if the focusing/defocusing strengths 

differ? 

 
§  Recalculate the M matrix and use dimensionless 

quantities 
 
     then take the trace for stability conditions to find 

L/2 L/2

cell 

�2fF fD �2fF

F ⌘ L

2fF
D ⌘ L

2fD

cosµ = 1 +D � F � FD

2

sin2
µ

2
=

FD

4
+

F �D

2
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Stability Diagrams II 

§  For stability, we must have 
§  Using                                 , stability limits are where 

§  These translate to a FODO “necktie” stability diagram 

cosµ = 1 +D � F � FD

2

sin2
µ

2
=

FD

4
+

F �D

2

�1 < cosµ < 1

cosµ = 1� 2 sin

2 µ

2

sin2
µ

2
= 0 sin2

µ

2
= 1

stable

unstable

unstable
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Onwards to the computer lab… 

http://toddsatogata.net/2017-USPAS/lab/lab1.pdf  

http://indico.cern.ch/event/286275/contributions/651708/attachments/531417/732835/juas.pdf  


