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IntroducKon	
•  Figure	of	merit	for	accelerator	performance	

–  Luminosity	for	colliders	
–  Brightness	and	coherence	for	light	sources	
–  Close	relaKon	with	beam	intensity	in	phase	space	

•  Emi3ance	and	beam	brightness	in	phase	space		
–  Important	and	fundamental	quanKKes	
–  Characterize	beam	quality	

•  Past	and	recent	development		
–  Path	toward	higher	brightness	of	charged	beams	
–  Recent	development		

•  MagneKzed	beam	
•  Emi3ance	exchange/transfer	in		phase	space	manipulaKon	

•  Goal	of	this	tutorial	
–  Review	the	theoreKcal	foundaKon	
–  Introduce	recent	developments	



Outline	of	the	tutorial	

•  Phase	space	concept	for	single	parKcle	dynamics	
•  Emi3ance	for	a	bunch	of	parKcles	
•  Emi3ance	diluKon	and	miKgaKon	
•  Electron	cooling	and	magneKzed	beam	
•  Phase	space	manipulaKon	
•  Discussion	and	Summary	



•  Hamiltonian	mechanics	and	its	origin	in	geometrical	opKcs	
•  Flow	in	canonical	phase	space	

–  Linear	and	nonlinear	harmonic	oscillator	
–  Benefits	of	phase	space	descripKon	
–  SymplecKc	map	and	its	properKes	

•  Invariant:	Liouville		theorem	

•  Single	parKcle	dynamics	in	accelerators	
–  Lorentz	force	and	equaKon	of	moKon	
–  Hamiltonian	(t	or	s	as	independent	variable)	
–  Transverse	and	longitudinal	equaKons	of	moKon	
	

II.	Phase	Space	Concept		
for	the	Single	ParKcle	Dynamics			



•  Courant-Snyder	theory		
–  Hill’s	equaKon	
–  Invariant	for	linear	map:	acKon	amplitude	
–  Phase	space	ellipse	and	Poincare	secKon	

•  ParKcle	dynamics	in	a	solenoid	
•  Various	phase	spaces	

–  Coupling	of	subspaces	in	6D	phase	space	
–  Trace	space,	nominal	trace	space,	canonical	phase	space	

	



•  Geometric	opKcs	for	light	rays	

Origin	of	Phase	Space	Concept	

Fermat’s	Principle	(1662)	 δS = δ n(x, y, z)ds = 0
A

B

∫

Lagrangian	EquaKon	

Eikonal	EquaKon	

Hamilton’s		EquaKon	(1828)	

L(q, ′q , z) = n(x, y, z) 1+ ′x 2 + ′y 2

d
dz

∂L
∂ ′q

− ∂L
∂q

= 0     for q = (x, y)

 

d
ds

n d
!r
ds

⎛
⎝⎜

⎞
⎠⎟ = ∇n

 

H (p,q, s) = p !q − L(q, !q, s)    
dq ds = ∂H ∂p 
dp ds = −∂H ∂q 

⎧
⎨
⎩

PropagaKon	of	light	is	described		
	by	the	flow	in	phase	space	

L(q, ′q )

′q

slope 
p = ∂L ∂ ′q

{H (p,q)



•  Classical	Mechanics	

	Phase	Space	Concepts	in	ParKcle	Dynamics	

Newton’s	EquaKon	(1686)	

 
δS = δ L(!q, !"q,t)dt = 0

A

B

∫

Lagrangian	EquaKon	

Extremal	AcKon	Principle	

Hamilton’s		EquaKon	

 

L = L(!q, !"q,t)
d
dt

∂L
∂ "qi

− ∂L
∂qi

= 0     for !q = (x, y, z)

 
m d 2 !x
dt 2

= F

 

H (p,q, s) = p !q − L(q, !q, s) = T +V     
dq ds = ∂H ∂p 
dp ds = −∂H ∂q 

⎧
⎨
⎩

 Example:   m!!x = −kx   
x(t)

t

q

p



•  Newton’s	equaKon	

 m!!x = −kx,    or  !!x +ω 2x = 0   (for ω= k m )

Simple	Harmonic	Oscillator	

•  Hamiltonian	dynamics	in	phase	space	

H (x, p) = T +V = p2

2m
+ mω

2x2

2
   (total energy)

 

!x
!p

⎛

⎝⎜
⎞

⎠⎟
=

−∂H ∂p
∂H ∂x

⎛

⎝
⎜

⎞

⎠
⎟ =

0 1
−1 0

⎛
⎝⎜

⎞
⎠⎟

∂H ∂x
∂H ∂p

⎛

⎝
⎜

⎞

⎠
⎟

–  (x,p)	are	on	equal	fooKng	in	equaKon	of	moKon,	or	called	
conjugate	pair	

	

–  SoluKons	are	phase	space	orbits	(x(t),	p(t))	
–  Phase	space	velocity	vector	is	equal	and	perpendicular	to	

the	gradient	vector	of	the	Hamiltonian	
–  Hamiltonian	or	energy	is	conserved	
	

H (x, p)

x

p

 ( !x, !p)

x

pdH
dt

= ∂H
∂t

= 0,    ⇒ H = constant ∂H
∂x
, ∂H
∂p

⎛
⎝⎜

⎞
⎠⎟

 ( !x, !p)



Nonharmonic	Pendulum	

EquaKon	of	moKon:	

Hamiltonian	(allows	general	coordinates):	

d 2θ
dt 2 +ω 2 sinθ = 0       ω= g

l
⎛
⎝⎜

⎞
⎠⎟

H (θ , pθ ) = T +V = pθ
2

2ml2
−mgl cosθ

Trajectories	in	phase	space	are	
	curves	of	constant	energy	E:	 H (θ , pθ ) = E



Hamilton’s	EquaKon	
•  Hamilton’s	equaKon	

–  Phase	space	vector	at	Kme	t	depends	on	its	previous	state	vector	
–  At	any	Kme	its	flow	is	governed	by	the	Hamiltonian	equaKon	

 

 

!q1

!p1

!q2

!p2

"

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

0 1
−1 0

0 1
−1 0

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⋅

∂H ∂q1

∂H ∂p1

∂H ∂q2

∂H ∂p2

"

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

,

 

z =

q1

p1

q2

p2

!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

,       dz
dt

= J ⋅∇zH
Vector	
In	2n-dim	
phase	space	

J:	2nx2n		

•  Benefits	of	phase	space	descripKon	
–  Phase	space	vector	is	a	complete	representaKon	of	state	of	moKon	
–  ParKcle	moKon	is	described	by	the	trajectories	in	phase	space,	these	

trajectories	do	not	cross	each	other	
–  Stability	of	dynamics	are	indicated	by	stable	regions	in	the	phase	

space	structure	

(for	moKon	in	n-dim	space)	



SymplecKc	TransformaKon	
•  Map	for	phase	space	flow	(canonical	transformaKon)	

dz1

dt
= J  ∇H (z1,t1)

M = ∂z2i (z1)
∂z1 j

⎛

⎝⎜
⎞

⎠⎟ 2n×2nz1 = z(t1)

 MJ !M = J

M	must	saKsfy	the	symplecKc	condiKon:	

Mz2 = z(t2 )

•  SymplecKc	condiKon	

dz2

dt
= J  ∇H (z2,t2 )

 !z2 = M!z1  ∇H (z1) = !M∇H (z2 )

t = t1

t = t2

H (x, p)

x

p
 !z1

 !z2
∇H (z2 ) ∇H (z1)z1z2



SymplecKc	Constraints	

•  SymplecKc	condiKon	

 MJ !M = J

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
In	general,	for	2n-dim	phase	space,	symplecKc	condiKon	sets		
K=n(2n-1)	constraints	for	2nx2n	matrix	elements	of	M.		
	
n=1,	K=1;			n=2,		K=6;			n=3,	K=15	

 

J =

0 1
−1 0

0 1
−1 0

!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

for	

•  Number	of	constraints	

 

J  is a 4 × 4 matrix wiht antisymmetry
MJ !M = J  sets 6 constraints for the 16 elements of M

Example:	n=2,	M	is	a	map	in	4-dim	phase	space	

For	n-dim	space	or	
2n-dim	phase	space,	



Features	of	SymplecKc	TransformaKon	
•  Liouville’s	Theorem	

					
	
	
	
		

 From  MJ !M = J,     we have 

 detM = 1

Fundamental	invariant:	Phase	space	volume	of	any	enclosed	boundary	
	is	conserved	under	symplecKc	map	

or    d 2n ′z
′Ω
∫ =  detM  d 2nz

Ω
∫ = constant

 
 dp∧ dq
Ω
∫ = pdq =

S
!∫ constantIn	2D	phase	space,	

Locally,	a	parallelogram	is	transformed	into	a	parallelogram.	
Globally,	the	shape	of	the	volume	may	change	by	the	symplecKc	map,	
but	the	volume	stays	constant.	
	



Poincare-Cartan	Invariants	

•  More	conserved	quanKKes:	sum	of	projected	subspace	
volumes	are	invariants	under	symplecKc	transformaKon	

	
ΣV2

= dpx
proj(V2 )
∫ dx + dpy

proj(V2 )
∫ dy + dpz

proj(V2 )
∫ dz

ΣV4
= dpx dpy
proj(V4 )
∫ dxdy + dpy dpz

proj(V4 )
∫ dydz + dpz dpx

proj(V4 )
∫ dzdx

•  Gromov’s	nonsqueezing	theorem	
	

StarKng	from	a	ball	with	projected	shadow	
Ager	canonical	transform,	the	shadow	on	any	plane	
will	never	decrease	below	its	original	value	

Π2 = πR
2

πR2



Single	ParKcle	Dynamics	In	Accelerators	

•  EquaKon	of	moKon	for	charged	parKcles	
	

	

 

dγ m!v
dt

= q
!
E +
!v
c
×
!
B⎛

⎝⎜
⎞
⎠⎟ ,       with  

!
B = ∇×

!
A

!
E = −∇Φ− 1

c
∂
!
A
∂t

⎧
⎨
⎪

⎩⎪
,

•  EM	fields	in	typical	elements	

Dipole	field:	

By = B0

Quadruple	field:	

 

!
B =B1(x

!ex + y
!ey )

∇×
!
B = 0 :   

∂By

∂x
= ∂Bx

∂y

AcceleraKon	field:	

Ez = E0 (r, z)cos(ωt +ϕ )

Solenoidal	field:	

B0 (z) =
µ0R

2

2
d ′z

−∞

∞

∫
Iθ ( ′z )Δr

[(z − ′z )2 + R2 ]3/2

 

Bz = B(z)−
r2

4
′′B (z)+!

Br = − r
2

′B (z)− r
3

16
′′′B (z)+!

⎧

⎨
⎪⎪

⎩
⎪
⎪



Hamiltonian	for	Charged	ParKcles	

•  Hamiltonian	for	a	free	parKcle	

 

H  = c
!
P − e

c
!
A(!x,t)⎛

⎝⎜
⎞
⎠⎟

2

+m2c2 + eΦ(!x,t)

     

 

canonical conjugate pairs:
(x,Px ),(y,Py ),(z,Pz )

for   
!
P = !p + e

c
!
A

•  Hamiltonian	for	a	charged	parKcle	in	EM	fields	

 

H = c p2 +m2c2         (relativistic,  !p = γ m!v)

H " mc2 + p2

2m
            (nonrelativistic,  p≪ mc)

 minimal coupling:    !p→
!
P − e

!
A c,   H → H − eΦ

Independent	variable:	t	



Hamiltonian	for	Charged	ParKcles	

•  Hamiltonian	for	charged	parKcle	in	accelerators	

Canonical conjugate pairs:   (x,Px ),(y,Py ),(z,δ )

 

(1)    From lab frame to the curvillinear coordinates:  
                  z→ s,   Pz → (

!
P ⋅ !es ) ⋅(1+ x ρ),  Az → (

!
A ⋅ !es ) ⋅(1+ x ρ)

 
!ex 

!ey

 
!es

ρ
s

(2)   Let s be independent variable:   (t,−H ) →  (s,−Ps ) 
        New Hamiltonian:

         H = −Ps = −eAs c − (1+ x ρ) (H − eΦ)2 c2 −m2c2 − (Px − eAx c)2 − (Py − eAy c)2

 

 (3)  For canonical pair:  z ≡ s − β0ct,   δ = 1
β0

2
E − E0

E0

 ≈ Δp
p0

 

        H = − 1+ x
ρ

⎛
⎝⎜

⎞
⎠⎟
qAs
p0

− x(1+δ )
ρ

+ 1
2(1+δ )p0

Px −
eAx

p0

⎛
⎝⎜

⎞
⎠⎟

2

+ Py −
eAy

p0

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 1

2γ 0
2 δ

2 +!

•  Independent	variable:	s	
•  The	new	Hamiltonian	is	no	longer	
							total	energy	



Transverse	EquaKon	of	MoKon	

•  Vector	potenKals	
The	magneKc	field	for	dipoles	and	quadruples	is	described	by	the	vector	potenKal		
	
	
	  

By = −B0 (s)+ B1(s)x +!
Bx = B1(s)y +!  

qAs
cp0

= − x
ρ
+ 1

ρ 2 − K1
⎛
⎝⎜

⎞
⎠⎟
x2

2
+ K1

y2

2
⎛
⎝⎜

⎞
⎠⎟
+!

  B0 (s) = p0c
eρ(s)

 

  K1(s) =
eB1(s)
p0c

•  Hamiltonian	to	the	2nd	order	

•  Linear	equaKon	for	transverse	moKon	
′′x + 1

ρ 2 − K1
⎛
⎝⎜

⎞
⎠⎟
x = 0

′′y + p0

p
K1y = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

   

 
H =

px
2 + py

2

2p
+ 1
2

1
ρ 2 − K1

⎛
⎝⎜

⎞
⎠⎟
x2 + 1

2
K1y

2 − xδ
ρ
!

when δ=0,  the motion in x, y, z are decoupled
H = H1(x, px )+ H2 (y, py )

dx
ds

= ∂H1

∂px
      

dpx
ds

= − ∂H1

∂x

⎧

⎨
⎪⎪

⎩
⎪
⎪

(for δ=0)

If  dδ ds = −∂H ∂z = 0 →  δ = δ 0



Hill’s	EquaKon	
•  Hill’s	equaKon	for	a	Kme	dependent,	periodic	harmonic	oscillator	

d 2x
ds2 + K(s)x = 0  

Hamiltonian:         H (x, px , s) =
px

2

2p0

 +K(s)x2

2
      

  

Hamiltonian Equation:  
′x = ∂H ∂px = px p0

′px = −∂H ∂x = −K(s)x

⎧
⎨
⎪

⎩⎪

 for periodic lattice focusing:     K(s + L) = K(s)   

Canonical conjugate pair :  (x, px )  for    px = p0 ′x

(H=-ps	is	not	energy)	

(energy	is	conserved)	

For	constant	energy,	we	can	consider	parKcle	moKon	in	(x,x’)		

H (x, px , s)

x

px



Courant-Snyder	Theory	of	Linear	Beam	OpKcs	

•  Courant-Snyder	parameterizaKon	of	transport	map	(periodic	laice)	

Linear map:   x
′x

⎛
⎝⎜

⎞
⎠⎟ s+L

= M (s + L s) x
′x

⎛
⎝⎜

⎞
⎠⎟ s

,    

 

C-S parametrization: 

M (s) = M (s + L s)= 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟! "# $#

cosµ +
α β
−γ −α

⎛

⎝
⎜

⎞

⎠
⎟

! "## $##

sinµ = I cosµ + S sinµ,    

Hill's equation requires the Twiss parameters (β,α ,γ ,µ)(s) to satisfy:   

α = − ′β 2,  µ(s) = ds β(s)
0

s

∫ +ϕ0,  β ′′β 2 − ′β 2 4  +K(s)β 2 = 0

Key features:  
M k = I cos kµ( )+ S sin kµ( )        similar to  Euler's identity:  eikθ = coskθ + isin kθ

 

MJ !M = J,     det M( )=1,        
M has 3 free parameters

for     βγ -α 2 = 1,     S2 = −I

I S

(α ,β,γ ): Twiss parameters



•  General	soluKon	

SoluKon	for	Hill’s	EquaKon	

x(s) = 2Jβ(s) cosϕ

′x (s) = − 2J β(s)(sinϕ +α (s)cosϕ )

⎧
⎨
⎪

⎩⎪
for    ϕ(s) =ϕ(0)+ ds1

β(s1)0

s

∫

•  Courant-Snyder	Invariant	

J = 1
2β

x2 + β ′x +α x( )2⎡⎣ ⎤⎦ βε

−α ε β

x

′x

γε
−α ε γ

From   sin2ϕ + cos2ϕ = 1,



Phase	Space	Ellipse	and	Courant-Snyder	Invariant	

•  Phase	space	ellipse	for	ring	opKcs	(Poincare	secKon)		

s1
s2

s3 s4 s5

 Area of ellipse=2πJ 

γ (s)x2 + 2α (s)x ′x + β(s) ′x 2 = 2J

•  Poincare	invariant	

Unlike	the	harmonic	oscillator,	here	the	phase	space	ellipses	changes	with	s.	But	
because	of	detM=1,	the	area	is	conserved.	

 M (s5 s1) = M (s5 s4 )!M (s3 s2 )M (s2 s1)

βε
x

′x

γε

Ellipses	in	x-x’	plane	for	different	s	

 
Area enclosed= ′x dx =!∫ 2π J



General	Beam	Transport	

•  General	soluKon	in	terms	of	Twiss	parameters	

 

x(s)
′x (s)

⎛
⎝⎜

⎞
⎠⎟!"# $#
= 2J

β(s) 0

−α (s) β(s) 1 β(s)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

! "##### $#####

cos(ϕ(s)+ϕ0 )
−sin(ϕ(s)+ϕ0 )

⎛

⎝
⎜

⎞

⎠
⎟

! "### $###

X(s)   =          B(s)       ⋅          u(s)

•  General	expression	of	transport	matrix	(general	laice)	

 
!u(s) B(s)

stretch	&	
sheer	

 
!
X(s)

M (s2 s1) = B(s2 )
cosϕ sinϕ
−sinϕ cosϕ

⎛

⎝
⎜

⎞

⎠
⎟ B−1(s1) =

β2
β1
(cosψ +α1 sinψ ) β1β2 sinψ

−1+α1α 2

β1β2
sinψ + α1 −α 2

β1β2
cosψ β1

β2
cosψ −α 2 sinψ( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

detB(s) = 1,    area preserved

Physical	
meaning:	

B−1(s1)

normalize	

 
!
X1

 
!u1

 
!u2

B(s2 )

stretch	&	
sheer	  

!
X2

X(s2 ) = M s2 s1( )X(s1)

′x

x

s1 s2



•  Special	features	about	solenoid	
–  It	plays	an	important	role	in	magenKzed	beam	
–  	x-y	coupling	
–  Constant	of	moKon	from	cylindrical	symmetry	
–  Canonical	momentum	includes	the	vector	potenKal	

MoKon	in	a	Solenoid	

•  The	magneKc	field	in	solenoid	is	cylindrically	symmetric	

 

∇×
!
B = 0

∇⋅  
!
B = 0 

⎧
⎨
⎪

⎩⎪
 

  
Bz = Bz (s)+!

Br = − r
2

′Bz (s)+!

⎧
⎨
⎪

⎩⎪
 

!
B = ∇×

!
A,               

!
A =

Bz (s)
2

(−y!ex + x
!ey )

or      2πrAθ = πr
2Bz ,      Aθ =

Bz (s)r
2

+"

Bz (s)

Br (s)



MoKon	in	a	Solenoid	

•  Hamiltonian	

 

H = (Px − eAx / c)2

2p0

+
(Py − eAy / c)2

2p0

    = Px
2

2p0

+ 1
8p0

eBz
c

⎛
⎝⎜

⎞
⎠⎟

2

x2

! "### $###
+
Py

2

2p0

+ 1
8p0

eBz
c

⎛
⎝⎜

⎞
⎠⎟

2

y2

! "### $###
+
eBz

2p0c
(Pxy − Pyx)

! "## $##
Hx (s) Hy(s) coupling term

for       
Ax = −Bzy 2
Ay = Bzx 2

⎧
⎨
⎩

Canonical  momentum:

In Cartesian coordinates:   

Px = p0 ′x + eAx c    
 Py = p0 ′y + eAy c

⎧
⎨
⎩

The	properKes	of	symplecKc	transformaKon	apply	to	the	canonical	conjugate	pairs	

Canonical conjugate pairs:    (x,Px ),(y,Py )



MoKon	in	a	Solenoid	

•  Hamiltonian	

 H = 1
2p0

Pr
2 +

e2Bz
2

4c2 r2⎛
⎝⎜

⎞
⎠⎟
+ 1

2p0

Pθ
2

r2 −
eBzPθ
c

⎛
⎝⎜

⎞
⎠⎟

•  Cylindrical	symmetry	

dPθ
ds

= − ∂H
∂θ

= 0

 

Pθ = γβmr
2 ′θ + er Aθ c = constant

i.e.    
!
L = !r ×

!
P = !r × ( !p + e

!
A c)

Canonical	Angular	Momentum	(CAM)	

•  Radial	moKon	
dr
ds

= − ∂H
∂Pr

,    dPr
ds

= − ∂H
∂r

focusing	 repulsive	centrifugal	force	

(Busch’s	Theorem)	

In cylindrical coordinates:  

Canonical conjugate pairs:  (r,Pr ),(θ ,Pθ )

′′r +
eBz
2p0c

⎛
⎝⎜

⎞
⎠⎟

2

r − Pθ
p0

⎛
⎝⎜

⎞
⎠⎟

2
1
r3

= 0



•  Example:		quiet	beam	entering	a	solenoid	

Focusing	in	a	Solenoid	

Inside	the	solenoid	body,	the	charge	acquires	angular	frequency	

 
!v Bz

Outside	the	solenoid,		the	beam	is	quiet:	

vr = vθ = 0,   Bz (s) = 0

Canonical angular momentum is conserved:     Pθ = γβmr
2 ′θ + erAθ c = 0

 

Aθ =
r
2
Bz (s),   so  γ mr2 !θ = − r

2

2c
eBz (s),    ω L = !θ = −

eBz
2p0

= −ω c

2

 Pθ = 0

Radial	focusing	inside	the	solenoid:	

′′r +
eBz
2p0c

⎛
⎝⎜

⎞
⎠⎟

2

r − Pθ
p0

⎛
⎝⎜

⎞
⎠⎟

2
1
r3

= 0

Pθ = 0

 
!v

IllustraKon	
of	solenoid	
focusing	

Aθ  
!v



•  Example:		rotaKng	beam	entering	a	solenoid	

MoKon	in	a	Solenoid	

At	entrance,		the	parKcle	has	transverse	
rotaKon	

vr = 0,    vθ =
ω c

2
,   Bz (s) = 0

Canonical angular momentum is conserved:     Pθ = γβmr
2 ′θ + er Aθ c = er2 Bz

2c

Inside	the	solenoid	body,	parKcle	transverse	moKon	is	quiet	

with Aθ =
r
2
Bz (s), Pθ = γβmr

2 ′θ + erAθ c = er2 Bz
2c

,

Radial	focusing	inside	the	solenoid:	

′′r +
eBz
2p0c

⎛
⎝⎜

⎞
⎠⎟

2

r − Pθ
p0

⎛
⎝⎜

⎞
⎠⎟

2
1
r3

= 0

Aθ = 0

cancelled	

No	focusing	in	r	

 
!vBz

 
!v

r = constant  if ′r (0) = 0

=
so  ′θ = 0



Transport	Matrix	of	a	Solenoid	

Br (s)

Bz (s)

 
!v
F1 MB F2

M = F2MBF1   =

C 2 CS K CS S2 K

−KCS C 2 −KS2 CS
−CS −S2 K C 2 CS K

KS2 −CS −KCS C 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 F2 =

1 0 0 0
0 1 −K 0
0 0 1 0
K 0 0 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 F1 =

1 0 0 0
0 1 K 0
0 0 1 0
−K 0 0 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

K = eB 2pc

 MB =

1 sinθ 2K 0 (1− cosθ ) 2K
0 cosθ 0 sinθ
0 −(1− cosθ ) 2K 1 sinθ 2K
0 −sinθ 0 cosθ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Transport for x, ′x , y, ′y( )



Role	of	Solenoid	Fringe	Fields	

 
!v
F1 MB F2

x

y

K = eB 2pc

y y y

x x x

F1 MB F2

Incoming	
parKcle	

x
′x
y
′y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0
K

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

RotaKon	stopped	
ager	entrance	fringe	 RotaKon	resumed	

ager	exit	fringe	
1
0
0
0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1
0
0
0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1
0
0
K

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Quiet	beam	good	for		
Electron	cooling	



Coupled	and	Decoupled	MoKon	

•  Phase	space	transport	for	a		general	form	of	Hamiltonian	

	
	
	

H = H (x,Px , y,Py , z,δ )
–  symplecKc	map	depends	on	phase	space	coordinates	(nonlinear	map)		
–  coupling	among	subspaces		

	
	
	

(x, px ),(y, py ) and (z,δ )

•  Decoupled	moKon	

	
	
	

H = H1(x,Px )+ H2 (y,Py )+ H 3(z,δ )

M =
M1 0 0
0 M 2 0
0 0 M 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Motions in each subspace are transported separately

x(s2 )
Px (s2 )

⎛

⎝
⎜

⎞

⎠
⎟ = M1

x(s1)
Px (s1)

⎛

⎝
⎜

⎞

⎠
⎟

   etc.



NoKons	of	Phase	Spaces	

(x, ′x )

•  Canonical	phase	space	

	
	
	
	

(x, px )   for   px mc = γβ( ) ⋅ ′x

(x,Px )      for   Px = px + eAx

•  Normalized	phase	space	

	

	
	

•  Trace	space	

	
	
	
	

(conjugate pair when Ax ≠ 0)

(when Ax = 0)

(when Ax = 0,  and p0 = γβmc = const.)



II.	Emi3ance	for	a	Bunch	of	ParKcles	

•  Liouville’s	Theorem	for	a	Bunch	of	ParKcles	
–  Beam	as	a	vector	in	the	6N-dim	phase	space	
–  Beam	as	an	ensemble	in	the	6-dim	phase	space	
–  Liouville’s	Theorem	and	incompressible	flow	

•  StaKsKcal	descripKon	of	emi3ance:	moment	matrix		

•  Role	of	Emi3ance	in	machine	performance	
–  Colliders:	luminosity		
–  Synchrotron	radiaKon	source:	photon	brilliance	
–  FEL:	gain	performance	and	transverse/longitudinal	coherence		

	



•  NoKons	of	emi3ance	
–  Canonical,	normalized	and	geometric	emi3ances	
–  Machine	and	beam	ellipses	
–  Slice	and	projected	emi3ance	
–  Beam	core	and	halo		
–  Rms,	95%,	etc	

•  Invariance	of	emi3ance	under	linear	transport	
–  Invariant	for	2D	linear	transport	
–  6D	emi3ance	preservaKon		
–  Decoupled	system:	emi3ance	for	each	subspace	is	preserved	
–  Eigen	emi3ances	and	invariants	of	moments	

	



Beam	Transport	in	6N-dimensional	Phase	Space	

•  A	charged	bunch	in	accelerators	consists	of	an	ensemble	of	N	charged	parKcles	

 

A bunch of N  particles: 
    described by (!r1,

!r2,", !rN ) in configuration space ⎯→⎯   3N  degree of freedom

    canonical phase space z = !r1,
!
P1,
!r2,
!
P2,"!rN ,

!
PN( )  ⎯→⎯  6N  degree of freedom

 •  The	state	of	the	beam	can	be	represented	by	one	state	vector	in	the	6N	
dimensional	phase	space	

t1

t2
6N-dimensional	
phase	space	

 

      !qi  
(i = 1,N )

     Pi  
(i = 1,N )

 
!q

 
!
P

Liouville	Theorem:	
	
The	volume	enclosed	by	any	hypersurface	
	in	the	6N	phase	space	is	conserved	for		
system	governed	by	Hamiltonian	dynamics	

(a	property	of	the	mapping)	

M
symplecKc	
map	

 

For Hamiltonian H = H (q1, p1,!q6N , p6N )
dz
dt

= J ⋅∇zH ,    zt = M t,t0( )z0,   with  MJMT = J

detM 6N×6N = 1,   ⎯→⎯   d 6Nz0
Ω(t1 )
∫ = d 6Nzt

Ω(t1 )
∫



Beam	Transport	in	6D	Phase	Space	

	
	
	

•  MoKon	for	an	ensemble	of	non-interacKng	parKcles	in	a	beam	

	

	
One	representaKve	parKcle		
transport	in	6N	phase	space	

N	parKcle	transport		
in	6D	phase	space	

Dimension	
reducKon	

 

   Htot = H (!q1,
!p1)+ H (!q2, !p2 )+"H (!qN , !pN )

 

 H (!q, !p) 

When	N	parKcles	are	idenKcal	and	non-interacKng	with	each	other,	

we	can	consider	only	one	parKcle	moKon	in	6D	phase	space		
governed	by	



Beam	Transport	in	6D	Phase	Space	

	

•  MoKon	for	an	ensemble	of	mutually	interacKng	parKcles	

 

If the particle collective interaction can be described by potentials Φcol (
!r ,t),
!
Acol (
!r ,t)( ),

as smooth functions of !r ,  
 

 

   
Φ = Φext +Φcol
!
A =
!
Aext +

!
Acol

⎧
⎨
⎪

⎩⎪
,    with   

!
Ecol = −∇Φcol −

∂
!
Acol
c∂t

!
Bcol = ∇×

!
Acol

⎧

⎨
⎪

⎩
⎪

 

Then motion of each particle in 6D phase space is governed by the single particle
Hamiltonian

                    H  = c
!
P − q

c
!
A(!x,t)⎛

⎝⎜
⎞
⎠⎟

2

+m2c2 + qΦ(!x,t)

 
The	smooth	funcKon	requirement	applies	to	the	mean	field	of	collecKve	interacKon,	
and	it	does	not	apply	to	Coulomb	collision.	



Incompressible	Flow	in	6D	Phase	Space	

t1

t2
6D	phase	space	

 

      !qi  
(i = 1 to 3)

     Pi  
(i = 1 to 3)

 
!q

 
!
P

M
symplecKc	
map	

•  Time	evoluKon	governed	by	reduced	Hamiltonian	
							is	considered	as	symplecKc	mapping	
	
•  For	large	N	parKcles	closely	clustered	in	small	
							phase	space	volume,	the	beam	state	can	be		
						represented	by	phase	space	density	
					
	
	

	

 f (
!q, !p,t)

 

The number of particles in a small volume d 6z = d 3!qd 3 !p is
              dN = f (!q, !p,t)d 3!qd 3 !p

 

During transport
    i    dN=invariant  (particle number conservation)
    i    d 3!q  d 3 !p = invariant  (Liouville theorem)
⇒ phase space density   f (q, p,t) = constant

Beam	moKoncan	be	viewed	as		
an	incompressible	flow	
in	6D	phase	space	



Phase	Space	Flow	for	a	Beam	of	ParKcles	
•  A	beam	usually	consists	of	N=109-1010	electron	or	ions.	
•  The	parKcles	in	the	beam	can	be	viewed	an	ensemble	in	phase-space	

evolving	in	Kme	following	symplecKc	map,	including	the	constraint	of	
Liouville’s	theorem.	

	

•  At	each	s,	the	laice	ellipse	can	be	filled	with	the	beam	parKcles	



StaKsKcal	DescripKon	of	Emi3ance	

•  For	a	beam	in	2D	x-x’	phase	space,	we	need	to	characterize	the	spread	of	
beam	parKcles	in	phase	space.		

•  Emi3ance	is	a	measure	of	the	phase	space	area	occupied	by	a	beam.	

•  Area	for	an	ellipse	
S = πr2 S = πab

abr
S = πab
a

b

•  Area	for	the	beam	rms	ellipse	in	the	(x,x’)	space	

x

′x

ε x =
S
π
= xrms ′xrms for  

xrms
2 = x2 = 1

N
xi

2

i=1

N

∑

′xrms
2 = ′x 2 = 1

N
′xi

2

i=1

N

∑  

⎧

⎨
⎪⎪

⎩
⎪
⎪

     
xrms

′xrms

(Unit:	mm-mrad)	



General	RMS	Ellipse	and	Emi3ance	

ε x =
S
π
= xrms ′xrms

   = x2 ′x 2 − x ′x 2

θ

x

′x x
′xChoosing θ  for least square condition:

   d
dθ

xi
2

i
∑ = d

dθ
′xi cosθ − xi sinθ( )2

i
∑ = 0

The solution:

      

tan2θ =
2 x ′x
x2 − ′x 2 ,    

  x 2 = 1
2

x2 + ′x 2 +
2 x ′x
sin2θ

⎛
⎝⎜

⎞
⎠⎟

  ′x 2 = 1
2

x2 + ′x 2 −
2 x ′x
sin2θ

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪



Beam	Matrix	

•  Beam	Matrix	in	terms	of	2nd-order	moments	

Define beam matrix:  

xrms
2 = x2 = 1

N
xi − x( )2

i=1

N

∑   

′xrms
2 = ′x 2 = 1

N
xi − x( )2

i=1

N

∑ ,   

x ′x = 1
N

xi − x( ) ′xi − ′x( )
i=1

N

∑

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

     

The emittance is related to beam matrix by:  

ε = x2 ′x 2 − x ′x 2 = det∑

 

For X = x
′x

⎛
⎝⎜

⎞
⎠⎟

,    Σ = X !X =
x2 x ′x

x ′x ′x 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟



Emi3ance	and	Courant-Snyder	Invariant	

•  Beam	ellipse	matched	with	laice	ellipse,	

Σ2D = ε
β α
α γ

⎛

⎝
⎜

⎞

⎠
⎟   with   βγ −α 2 = 1

βε

−α ε β

x

′x

γε
−α ε γ

•  ParKcle	orbit	in	terms	of	laice	Twiss	parameters	
xi (s) = 2Jiβ(s) cos(ψ (s)+ϕi )

′xi (s) = − 2Ji β(s) α (s)cos(ψ (s)+ϕi )+ sin(ψ (s)+ϕi )[ ]
⎧
⎨
⎪

⎩⎪
(i = 1 to N )

x2 = 1
N

2Jiβ(s)cos2 ψ (s)+ϕi( )
i=1

N

∑ = β(s) J ,  

′x 2 = γ (s) J ,  and x ′x =α (s) J

For	matched	beam,	for	each	Ji,		parKcles	are	uniformly	distributed	around	the	ellipse,	

ε = 1
N

Ji
i=1

N

∑ = J



Invariance	of	Emi3ance	Under	Linear	SymplecKc	Transport	

•  Invariance	of	emi3ance	for	matched	beam	

ε = 1
N

Ji
i=1

N

∑ = J
Average	of	area	for	ellipse	of	each	parKcle,	
conserved	during	symplecKc	transport	

•  Invariance	for	general	beam	distribuKon	

 

For   X(s2 ) =
x(s2 )
′x (s2 )

⎛

⎝
⎜

⎞

⎠
⎟ = MX(s1),    Σ s2( ) = X(s2 ) !X(s2 ) = MΣ s1( ) !M

 Σ(s2 ) = MΣ(s1) !M ,             detΣ(s2 ) = detM( )2  detΣ(s1)
=1  (symplectic)

ε = x2 ′x 2 − x ′x 2 = det∑ = const.



Emi3ance	for	Various	Phase	Spaces	

•  Emi3ance	in	trace	space															
							(geometric	emi3ance)	
							invariant	for	constant	energy	

(x, ′x )
  ε x

2 = detΣ x ′x = det
x2 x ′x

x ′x ′x 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

•  Emi3ance	in	normalized	trace	space		 (x, px )

  εnx
2 = detΣ xpx

= det
x2 xpx

xpx px
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

for the kinetic momentum  
px = px mc =γ 0β0 ′x

•  Emi3ance	in	canonical	phase	space		(x,Px )
for the canonical momentum  
Px = Px mc,   Px = px + eAx c   εcx

2 = detΣ xPx
= det

x2 xPx

xPx Px
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

AdiabaKc	damping:		
reducKon	of	geometric	emi3ance	during	acceleraKon	 εnx = γ 0β0ε x



Emi3ance	for	6D	Phase	Space	

•  ParKcles	in	6D	phase	space																														form	a	6D	RMS	ellipsoid	(x,Px , y,Py , z,δ )

 

Σ6D = X !X =

x2 xPx xy xPy xz xPz

Pxx Px
2 Pxy PxPy Pxz PxPz

yx yPx y2 yPy yz yPz

Pyx Py ′x Pyy Py
2 Pyz PyPz

zx zPx zy zPy z2 zPz

Pzx PzPx Pzy PzPy Pzz Pz
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Beam	
matrix	

ε6D = detΣ6DBeam	6D	rms	emi3ance:	

                           

Projected emittance in (x,Px ),  or in (y,Py ),  (z,δ )  

εcx
2 = detΣ2D = det

x2 xPx

xPx Px
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Invariant	for	symplecKc	
transport	



Eigen	Emi3ance	

•  DiaganolizaKon	of		the	beam	2nd		moment	matrix	

At each s,  there exists similarity transformation:       

 

x
Px
y
Py
z
Pz

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= R

ux
uPx
uy
uPy
uz
uPz

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

 

such that 

Σ(s) = X !X = R(s)D(s)R−1(s) X(s) = R(s)U(s),

 

for    D = U !U =

ux
2

uPx
2

uy
2

uPy
2

uz
2

uPz
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

or		

0
0

•  Eigen	emi3ances:	

ε x
2 (s) = ux

2 uPx
2

ε y
2 (s) = uy

2 uPy
2

ε z
2 (s) = uz

2 uPz
2



Invariants	of	Eigen	Emi3ance		

•  Invariants	of	eigen	emi3ance	under	linear	symplecKc	transport	

I0 = ε x
2 ⋅ε y

2 ⋅ε z
2

I2 = ε x
2 + ε y

2 + ε z
2

I4 = ε x
4 + ε y

4 + ε z
4

I4 = ε x
6 + ε y

6 + ε z
6

(volume	invariance)	

(sum	of	projected	area	for	all	subspaces)	



NoKons	of	Emi3ance	

•  Different	definiKons	of	emi3ance.	
								
			 ε95%  is the area of ellipse that contains 95% of the beam,

with the same (β,α ,γ ) for the ellipse as the rms one.
ε100%  is the area of ellipse that contains 100% of the beam.

•  Beam	and	machine	ellipse	 machine	
rms	ellipse	

beam	
rms	ellipse	

A	beam	injected	into	a	laice	may	not	
have	its	rms	ellipse	matched	to	the	
machine	ellipse.	

ε95%



NoKons	of	Emi3ance	

•  Beam	core	and	halo		

x

′x

x

•  Halo	may	have	different	ellipse	as	the	core	distribuKon	

′x

•  The	rms	emi3ance	measures	the	spread	of	parKcles	
						for	the	core	of	the	beam.		It	is	a	good	descripKon	of	beam					
						distribuKon	if	the	beam	is	dominated	by		distribuKon	in	the	core	

•  Each	tail	parKcles	has	contribuKon	to	the	emi3ance	than	a	parKcle	in	
the	beam	core.	Emi3ance	is	not	a	good	measure	of	beam-core	spread	if	
there	are	many	tail	parKcles	



•  Slice	and	projected	emi3ance	

NoKons	of	Emi3ance	

•  Each	longitudinal	slice	of	the	bunch	may	have	its	own	phase	space	ellipse	and	
					slice	emi3ance	in	the	x-x’	phase	space	

•  The	projecKon	of	the	whole	beam	on	the	x-x’	phase	space	will	have	larger	
						rms	spread,	or	larger	projected	emi3ance		



•  Luminosity	
–  The	performance	of	a	hadron	or	lepton	collider	is	characterized	by	the		beam	

energy	and	the	luminosity.		
–  Luminosity	is	the	event	rate	for	unit	cross-secKon	area	[cm-2s-1]	

Role	of	Emi3ance	in	Colliders	

 

L = dR
σ intdt

  cm−2s−1⎡⎣ ⎤⎦

   = 2cfrep ρ2 (x, y, z − ct)ρ1(x, y, z + ct)∫  d 3!xdt

For Gaussian beams, if σ 1x =σ 2x = ε xβx
* , σ 1y =σ 2y ε yβy

* ,    

                      L =
frepN1N2

4πσ xσ y

=
frepN1N2

4π ε xβx
*ε yβy

*

The	goal	of	pushing	for	high	luminosity	is	to	design	opKcs	with	small	beta*,		
and	deliver	high	charge	beam	with	small	emi3ance	at	interacKon	point.	



	Path	Toward	Higher	Luminosity	

•  With	the	increased	understanding	of	mechanism	of	emi3ance	growth	and	miKgaKon	
						method,	and	advances	in	technology	and	simulaKons,	the	colliders	conKnue	to	achieve		
						higher	luminosity	performances.	



Role	of	Emi3ance	in	Undulator	RadiaKon	

•  Brightness	of	a	photon	beam	

Photon	pulse	generated	by	single	electron	

 
B0 (!x, ′!x ) = F1(ω )

λ 2( )2 e
− !x2 2σ r

2− !′x 2 2σ r
2

,    with  εγ =σ r ′σ r =
λ

4π

Photon	pulse	generated	by	beam	of	electrons	

 

B(!x, !′x ) = B0∫ (!x − !x1,
!′x − !′x1, z) f (

!x1,
!′x1)d!x1d

!′x1

B(0,0) = NeF1(ω )
(2π )2 ∑ x∑ ′x ∑ y∑ ′y

for  ∑ x,y = σ x,y
2 +σ r

2 ,  ∑ ′x , ′y = σ ′x , ′y
2 +σ r

2

RadiaKon	dominated	regime	(diffracKon-limited	regime)	

 B ∼ NeB0    when    ε x,y ≤ εγ
Requirement	on	emi3ance	



Role	of	Emi3ance	in	FEL	Performance	

Gain	of	SASE	FEL	

•  Gain	performance	for	SASE	X-ray	FEL	

•  Transverse	divergence	will	change	the	average	
															longitudinal	velocity	of	the	electron	bunch,	causing	

						change	of	synchronism	of	e-beam	with	photon	beam	

•  FEL	gain	performance	requires	

εn
γ

≤ λr

4π
     for   λr =

λu
2γ 2 1+ K

2

2
⎛
⎝⎜

⎞
⎠⎟

Larger	emi3ance	means	longer	gain	length	
and	the	need	for	longer	undulator.	

•  Example	

LCLS:		  εnx = γ 0ε x ∼1 mm-mrad



	Path	toward	Higher	Brightness	



III.	Emi3ance	DiluKon	and	MiKgaKon	Methods	

•  Sources	of	emi3ance	diluKon	
•  Mechanisms	for	emi3ance	diluKon	

–  Mismatch	
–  FilamentaKon	from	nonlinear	opKcs	
–  CollecKve	effects	
–  Halo	formaKon		
–  Sca3ering	

•  Examples	of	MiKgaKon	Method	
–  Space	charge	compensaKon	
–  Electron	cooling	to	suppress	IBS	effects	



Sources	of	Emi3ance	DiluKon	

Hamiltonian		
•  Accelerator	system	

–  Beam	mismatch	
–  Nonlinear	opKcs	
–  Errors,	misalignments	

•  CollecKve	effects	
–  Space	charge	
–  Coherent	synchrotron	radiaKon	(CSR)	
–  Wakefield	(impedance)	

•  Two-beam	effects	
–  Beam-beam	
–  Electron	cloud	for	posiKvely	charged	beam	
–  Ion	effects	for	electron	beams	

Non-Hamiltonian		
•  Synchrotron	radiaKon	
•  Sca3ering		

–  Residual	gas	sca3ering	
–  Intrabeam	sca3ering	
–  Touschek	sca3ering	



•  Mismatch	of	beam	and	laice	ellipse		

Example	Mechanisms	of	Emi3ance	DiluKon	

x

′x

Incoming	
beam	ellipse	

Laice	
ellipse	

For	a	periodic	laice,	when	the	incoming	beam	ellipse	
	differs	from	machine	laice	ellipse,	the	beam	parKcles	
phase	space	trajectory	will	follow	the	machine	ellipse,	
causing	enlarged	phase	space	area	or	emi3ance	growth.	

•  Nonlinear	opKcs	
–  Nonlinear	opKcs	maps	a	straight	line	in	phase	space	to	a	curved	line.	It	

features	tune	dependence	on	the	betatron	amplitude.	
–  Phase	space	may	have	resonance	islands	at	large	amplitudes	
						that	trap	parKcles,	and	separatrix	may	lead	parKcle	to	chaoKc	moKon	



Example	Mechanisms	of	Emi3ance	DiluKon	

•  OpKcal	mismatch	at	injecKon	



CollecKve	Effect	on	Emi3ance	DiluKon	

•  Example:	Space	charge	effects	at	injector	

•  Linear	transverse	space	charge	force	

•  Different	slices	experience	different	
transverse	phase	space	transport	

•  The	slice	emi3ance	is	the	same,	but	
the	projected	emi3ance	can	be	
much	larger.	



Halo	FormaKon	

–  Mismatched	beam	cause	breathing	
						mode	for	the	beam	core	due	to	space	
						charge	interacKon	
	
–  Breathing	of	beam	core	drives	parKcles	
					to	parametric	resonance,	forming	halo	
					parKcles	

	
–  Halo	causes	beam	loss	at	aperture,		
					that	can	cause	radioacKvaKon	at	the	
					pipe	wall	

	

				



Sca3ering	Effects	on	Emi3ance	DiluKon	

•  Intrabeam	Sca3ering	(IBS)	

–  ParKcles	within	the	beam	can	have	Coulomb		
					collision	with	small	angle	that	could	transfer		
					the	transverse	momentum	to	longitudinal	
						ones.	
–  With	dispersion	(x-dE/E)		and	x-y	coupling	in	

the	laice,	this	could	lead	to	6D	emi3ance	
growth.	

				

s

x

ParKcle	sca3ering	in	the		
beam	comoving	frame	

Measured	and	simulated	
emi3ance	growth	
due	to	IBS	at	KEK-ATF	



Emi3ance	CompensaKon	Method	

Space	charge	
defocusing	

Space	charge	
defocusing	

Solenoid		
foucsing	

L1 L2



Electron	Cooling	to	Suppress	IBS	Effects	



IV.	Electron	Cooling	and	MagneKzed	Beam	

•  Benefit	of	using	magneKzed	beam	
•  GeneraKon	of	magneKzed	beam	
•  CharacterizaKon	of	magneKzed	beam	
•  Transport	of	MagneKzed		
•  SimulaKon	results	for	JLEIC	
	



MagneKzed	Beam	for	Electron	Cooling	

•  IllustraKon	of	high-energy	cooling	using	magneKzed	beam	
	

Features:	
•  Electron	cathode	immersed	in	solenoid	
•  OpKcal	matching	between	two	solenoids	through	all	the	beam	lines	
•  Electron	beam	is	in	calm	state	(almost-parallel	beam	with	large	transverse	size)	
					during	cooling	process		

 
σ⊥ ≫ ρL =

γ mev⊥[c]
eBs

⎛
⎝⎜

⎞
⎠⎟



Benefits	and	Challenges	of	Using	MagneKzed	Beam	

•  Benefit	
–  Strong	reducKon	of	e-beam	divergence	
–  Due	to	the	freezing	of	the	electron	transverse	moKon,	cooling	

efficiency	is	significantly	improved	since	it	is	now	only	limited	by	
the	longitudinal		temperature																					

–  Strong	reducKon	of	misalignment	impact	on	cooling	rate	
–  Cyclontron	moKon	of	electron	in	solenoid	also	suppresses	

recombinaKon	during	cooling	process	

 
usually T! ≪T⊥( )



Electron	Cooler	Design	for	JLEIC	

	
•  Challenges	

–  Requires	generaKon	and	transport	of	magneKzed	beam	
–  Need	opKcal	soluKon	of	beamline	design	that	is	different	from	those	

for	usual	uncoupled	beams	
–  RotaKng	beam	transported	through	laice	with	axial-symmetric	

focusing	



GeneraKon	of	MagneKzed	Beam	

 

Canonical angular momentum (CAM)
is conserved:

L = !r × (γ m!v + e
!
A c) = γ mr2 "θ +

eBz
2[c]

r2

Inside solenoid  

Aθ =
1
2
Bzr

2
 

At cathode  
!θ = 0

CAM vs. rms size at cathode:

         L =
eBz
[c]

σ c
2

 
!vBz

 
!v

KineKc	angular	momentum	acquired	at	the	
Exit	fringe	of	the	solenoid:	



Measurement	of	Angular	Momentum	

L =
eBz
[c]

σ c
2



CharacterizaKon	of	MagneKzed	Beam	

 

  Σ = X
Y

⎛
⎝⎜

⎞
⎠⎟
!X !Y( ) =

X !X X !Y

!XY Y !Y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

x2 x ′x xy x ′y

′x x ′x 2 ′x y ′x ′y

yx y ′x y2 y ′y

′y x ′y ′x ′y y ′y 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

  

x
′x

y′y

volume of 4D phase space

ε4D = detΣ  = εu
2  

εu
2  = εeff

2 − L2

•  4D	ellipsoid	in		(x,x’,y,y’)	phase	space	

•  RotaKonal	symmetry	

RotaKon	in	x,y:	

 For projected 2D phase space vectors    X = x
′x

⎛
⎝⎜

⎞
⎠⎟

,   Y =
y
′y

⎛

⎝
⎜

⎞

⎠
⎟ ,

X1

Y1

⎛

⎝
⎜

⎞

⎠
⎟ = R

X
Y

⎛
⎝⎜

⎞
⎠⎟

   for  R= I cosθ I sinθ
−I sinθ I cosθ

⎛
⎝⎜

⎞
⎠⎟ x

y1

x1
θ

 

  Σ1 =
X1

Y1

⎛

⎝
⎜

⎞

⎠
⎟ !X1

!Y1( ) = R∑ !R = ∑symmetry:	

∑ =
εeffT LJ
−LJ εeffT

⎛

⎝
⎜

⎞

⎠
⎟   with   J = 0 1

−1 0
⎛
⎝⎜

⎞
⎠⎟

,   detT = 1
L=L /2

CharacterizaKon:	



RelaKonship	of	Various	Emi3ances	

εu
εeff

L             
!"# $#

Projected	
emi3ance	

Coupling	
term	

Thermal	
emi3ance	

volume of 4D phase space

ε4D = detΣ  = εu
2  

εu
2  = εeff

2 − L2

O



•  Eigen	emi3ance	

Eigen-emi3ance	and	Invariance	

 

The symmetric matrix ∑  can be diagnolized by a symplectic matrix:

∑ = M ∑0
!M ,     with  ∑0 =

ε+T+ 0
0 ε−T−

⎛

⎝
⎜

⎞

⎠
⎟    for  T± =

β± 0
0 1 β±

⎛

⎝
⎜

⎞

⎠
⎟

Here ε+  and ε−  are called eigen emittance, with εu
2 = ε+ε−

with ε+ = εeff + L and  ε− = εeff − L

•  Invariance	of	symplecKc	transformaKon	

1st  invariance:    εu
2   or  ε4D  (Liouville Theorem)

2nd  invariance:    ε+
2 + ε−

2 = 2 εeff
2 + L2( )

 

Geometric	
mean	



RelaKonship	of	Various	Emi3ances	

εu

 
                           ! "## $##

ε+
ε−

thermal	
emi3ance	

large	
emi3ance	

small	
emi3ance	

εu
2 = ε+ε−

             
!"# $#

A B

C

P

 

ΔAPC ∼ ΔCPB

AP
CP

= CP
BP

CP = AP ⋅BP

Geometric mean



RelaKonship	of	all	the	Emi3ances	

εu

 
                           ! "## $##

ε+

 
                           ! "## $##

ε−

εeff
L

             
!"# $#

             
!"# $#εeff

εu :  4D emittance εu = ε4D

ε± :   eigen emittance
εeff :  projected emittance 
         on x- ′x  or y - ′y  plane
L:     coupling term

     εu
2 = ε+ε−

 
ε+ = εeff + L 
  ε− = εeff − L

⎧
⎨
⎩



Round	to	Flat	TransformaKon	

εuεu
εeff

L             
!"# $#
O             

!"# $#
εeff  

                           ! "## $##
             
!"# $#

ε+
ε−

∑ =
εeffT LJ
−LJ εeffT

⎛

⎝
⎜

⎞

⎠
⎟   ∑0 =

ε+T+ 0
0 ε−T−

⎛

⎝
⎜

⎞

⎠
⎟

 ∑ = M ∑0
!M



Transport	of	MagneKzed	Beam	to	the	Cooling	Channel	

Features:	
•  Laice	focusing	is	axial	symmetric,	with	index	½	in	arc	dipoles	
•  Matching	secKons	are	applied	before	the	arc	and	before	the		
					cooling	solenoid	
•  Beam	has	angular	momentum	during	the	transport	



V.	Phase	Space	ManipulaKon	

•  Horizontal	to	verKcal	emi3ance	exchange	
•  Longitudinal	to	transverse	emi3ance	exchange	
•  Emi3ance	parKKoning	



X-Y	Emi3ance	Exchange	

ε x

ε yε y

ε x

ε4D = ε x1
2 ε y1

2 = ε x2
2 ε y2

2

I (2) = ε x1
2 + ε y1

2 = ε x1
2 + ε y1

2



Longitudinal	to	Transverse	EEX	

MEX = MDMCMD = 0 B
C 0

⎛
⎝⎜

⎞
⎠⎟

MD =

0 L 0 η
0 1 0 0
0 η 1 ζ
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

MC =

1 0 0 0
0 1 k 0
0 0 1 0
k 0 0 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

when  1+ kη = 0

ε4D = ε x1
2 ε z1

2 = ε x2
2 ε z2

2

I (2) = ε x1
2 + ε z1

2 = ε x1
2 + ε z1

2

X =

x
′x
z
δ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,   X→ MX



Emi3ance	ParKKoning	

εuεu
εeff

L             
!"# $#

O             
!"# $#

εeff  
                           ! "## $##

             
!"# $#

ε+ ε−

∑ =
εeffT LJ
−LJ εeffT

⎛

⎝
⎜

⎞

⎠
⎟   ∑0 =

ε+T+ 0
0 ε−T−

⎛

⎝
⎜

⎞

⎠
⎟

 ∑ = M ∑0
!M

RotaKng	
Round	beam	 Flat	beam	Non-rotaKng	

Round	beam	
Within	the	cathod	
	

∑ =

σ c
2

σ ′c
2

σ c
2

σ ′c
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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Emission	
In	solenoid	

Non-Hamiltonian		
Process	to	
Introduce	
correlaKon	

Hamiltonian		
process	

εu

             
!"# $#

εc              
!"# $#

εc

Emi3ance	ParKKoning	

εu
2 = εc ⋅εc εu

2 = ε+ ⋅ε−



Example	of	Flat	Beam	GeneraKon		



•  We’ve	reviewed	the	basic	concepts	of	phase	space	flow,	
symplecKc	map	and	the	related	properKes	

•  The	Hamiltonian	dynamics	is	fundamental	for	studies	of	single	
parKcle	and	bunch	dynamics	in	accelerator	physics	

•  MagneKzed	beam	for	electron	cooling	has	many	interesKng	
and	non-convenKonal	features	

•  Recent	development	in	phase	space	manipulaKon	extends	the	
previous	concepts	and	opens	up	many	new	possibiliKes	

Summary	
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