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Review 
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General Non-Periodic Transport Matrix 

§  We can parameterize a general non-periodic transport matrix 
from s1 to s2 using lattice parameters and  

§  This does not have a pretty form like the periodic matrix 
However both can be expressed as 
 
where the C and S terms are cosine-like and sine-like; the 

second row is the s-derivative of the first row! 
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Design Orbit Perturbations 

§  Sometimes need a local change          to the design orbit 
§  But we really only get changes in angle        from magnets 
§  e.g. small dipole “corrector”: 
§  Changes to/corrections of design orbit from dipole correctors 
§  Linear errors add up via linear superposition   
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Checking Optics with Difference Orbits 

§  Steering changes through linear elements are linear 
§  Compare calculated optical transport of Δx’ to measured 

§  Can localize focusing errors with enough BPMs 
§  Above picture is for single-pass AGS to RHIC transfer line 
§  Strong nonlinearities introduce dependence on initial orbits 

Physics of the AGS to RHIC Transfer Line Commissioning, T. Satogata, W.W. MacKay, et al, EPAC’96 

Horizontal Vertical 
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Checking Optics with Difference Orbits 

§  PEP-II vertical orbit during commissioning 
§  Projected vertical betatron oscillation in near-FODO lattice 
§  Discrepancy starts at s~700m 
§  Later found two quadrupole pairs had ~0.1% errors 
§  Can clearly discriminate systematic optics errors from 

random BPM errors 

Line: Predicted FODO orbit 

Dots: Measured orbit (with errors at s=700m) 

Y. Cai, 1998, from M. Minty and F. Zimmermann, “Beam Techniques: Beam Control and Manipulation” 
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Control: Two-Bump 

§  A single orbit error changes all later positions and angles 
§  Add another dipole corrector at a location where                    

At this point the distortion from the original dipole corrector is 
all x’ that we can cancel with the second dipole corrector. 

§  Called a two-bump: localized orbit distortion from two correctors 
§  But requires                     between correctors  
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Control: Three-Bump (see computer lab) 

§  A general local orbit distortion from three dipole correctors 
§  Constraint is that net orbit change from sum of all three kicks 

must be zero 

§  Bump amplitude 
§  Only three-bump requirement is that S1, S2 ≠ 0 

xb = S1�x

0
1
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Steering Error in Synchrotron Ring 
§  Short steering error       in a ring with periodic matrix M 

§  Solve for new periodic solution or design orbit (x0,x’0) 

§  Note that (x0=0,x’0=0) is not the periodic solution any more!  
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Steering Error in Synchrotron Ring 

§  We can use the general propagation matrix to find the new 
closed orbit displacement at all locations around the 
synchrotron 

§  This displacement of the closed orbit changes its path length 
§  If the revolution (RF) frequency is constant, then the beam 

energy changes, and there is an extra (small) term in the 
closed orbit displacement 
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RHIC Vertical Difference Orbit 

Predicted difference orbit Measured difference orbit 

Where is the “cusp”? 

§  Ring difference orbits also measure optics 
§  Compare against modeled/design orbit 

§  Integer part of tune readily visible: Q~30 
§  Can easily find reversed, broken BPMs 
§  Can also find (or eliminate) focusing errors 
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RHIC Vertical Difference Orbit 

Predicted difference orbit Measured difference orbit 

Where is the “cusp”? 

§  Ring difference orbits also measure optics 
§  Compare against modeled/design orbit 

§  Integer part of tune readily visible: Q~30 
§  Can easily find reversed, broken BPMs 
§  Can also find (or eliminate) focusing errors 
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LOCO and SVD Statistical Methods 

§  Measuring many difference orbits in a ring gives a ton of 
information about optics, BPM and corrector errors 
§  Singular value decomposition (SVD) optimization of error fits 
§  Has become standard method for correction of synchrotron lattices, 

particularly synchrotron light sources, led to other methods 
•  e.g. model independent analysis (MIA), independent component 

analysis (ICA) 
J. Safranek, “Experimental Determination of Storage Ring Optics using Orbit Response Measurements”, 1997 

NSLS VUV synchrotron: before optics correction NSLS VUV synchrotron: after optics correction 
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Focusing Error in Synchrotron Ring 

§  Short focusing error in a ring with periodic matrix M 
§  Now solve for Tr M to find effects on tune Q 

§  For small errors                               we can expand to find 

§  Can be used for a simple measurement 
 of      at the quadrupole  

§  Quadrupole errors also cause resonances 
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Chromaticity Correction 

§  How can we control chromaticity in our synchrotron ring? 
§  We need a way to connect momentum offset    to focusing 
§  Dispersion (momentum-dependent position) and sextupoles 

(nonlinear focusing depending on position) come to rescue 

 
§  Total chromaticity from all sources is then 

§  Strong focusing (large K) requires large sextupoles, nonlinearity!  
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Doglegs 

§  Displaces beam transversely without changing direction 
§  What is effect on 6D optics? 

§  Be careful about the coordinate system and signs!! 
§  If ρ,θ>0, positive displacement points out from dipole curvature 
§  Be careful about order of matrix multiplication! 

(C&M 3.102)
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Reverse Bend Dipole Transport 

§  What is the correct 6x6 transport matrix of a reverse bend dipole? 
§  It turns out to be achieved by reversing both ρ and θ	

§  ρθ=L (which stays positive) so both must change sign 
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Aside: Longitudinal Phase Space Drift 

§  Wait, what was that M56 term with the relativistic effects? 
§  Recall longitudinal coordinates are (z, δ) 
§  This extra term is called “ballistic drift”: not in all codes! 

•  Important at low to modest energies and for bunch compression 
•  Relativistic terms enter converting momentum p to velocity v 

δ 
(e

-3
) 

relative z position [mm] 

Positive δ move forward in bunch 

Negative δ move backward in bunch 
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Weak Dogleg 
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Dogleg Dispersion 

L = 14 m � = 0.08 rad ) L� = 1.12 m

For weak dogleg 
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Achromatic Dogleg 
§  How can we make an achromatic dogleg? 

§  Use an I insertion (e.g. four consecutive π/2 insertions) 

 
 
§  Any transport with net phase advance of 2nπ will be 

achromatic (nπ if all dipoles bend in same direction) 
•  common trick for matching dispersive bending arcs to non-

dispersive straight sections. 
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Achromatic Dogleg 
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Achromatic Dogleg: Steffen CERN School Notes 

K. Steffen, CERN-85-19-V-1, 1985, p. 55 
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First-Order Achromat Theorem 

§  A lattice of n repetitive cells is achromatic (to first order, or 
in the linear approximation) iff                 or each cell is 
achromatic 

§  Proof: 

§  So the lattice is achromatic only if            or 
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Chicane 

§  Divert beam around an obstruction 
§  e.g. vertical bypass chicane in Fermilab Main Ring 
§  e.g. horizontal injection chicane in CEBAF recirculating linac 
§  Essentially a design orbit “4-bump” (4 dipoles) 

§  Usually need some focusing, optics between dipoles 
§  Usually design optics to be achromatic 

§  Operationally null orbit motion at end of chicane vs changes in input 
beam energy 

§  Naively expect M56<0 (bunch lengthening or decompression) 
§  Higher energy particles (+δ) have shorter path lengths 
§  But can compress bunches with introduction of longitudinal correlation 

+x̂

�✓ bend �✓ bend
+✓ bend +✓ bend
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AGS to RHIC Transfer Line 

(vertical dogleg) 

The ATR vertical dogleg is not strictly a dogleg since the planes of the 
AGS and RHIC accelerators are not parallel 
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CEBAF 

Injection chicane 

Spreader 

Recombiner 
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CEBAF Spreaders/Recombiners 

§  Problem: Separate different energy beams for transport 
into arcs of CEBAF, and recombine before next linac 
§  Achromats: arcs are FODO-like, linacs are dispersion-free 
§  “I” insertion: 1 betatron wavelength between dipoles 
§  Single dogleg: unacceptably high beta functions 
§  Two consecutive “staircase” doglegs with same total phase 

advance was solution 

§  Still quite a challenge in physical layout of real magnets! 

D. Douglas, R.C. York, J. Kewisch, “Optical Design of the CEBAF Beam Transport System”, 1989 
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CEBAF Spreaders/Recombiners 

“One step” recombiner 
Unacceptably large vertical 
beta function/beam size 
(550 m) 

“Staircase” two-step recombiner 
Acceptable beta functions and 
beam sizes in both planes 
(100 m) 

Dispersion 

Dispersion 
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Mobius Insertion 

§  Fully coupled equal-emittance optics for e+e- CESR collisions 
§  Symmetrically exchange horizontal/vertical motion in insertion 
§  Horizontal/vertical motion are coupled 

•  Only one transverse tune degree of freedom! 

§  Match insertion to points where βx=βy and αx=αy with phase 
advances that differ by π between planes 

•  Normal insertion: 
 
•  Rotated by 45 degrees around s axis: 

§  A purely transverse example of an emittance exchanger 
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Transverse/Longitudinal Emittance Exchange 

J.C.T. Thangaraj, Experimental Studies on an Emittance Exchange Beamline at the A0 Photoinjector, 2012 
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Fermilab A0 Emittance Exchanger 

J.C.T. Thangaraj, Experimental Studies on an Emittance Exchange Beamline at the A0 Photoinjector, 2012 

Dogleg Dogleg 
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(xkcd interlude) 

http://www.xkcd.org/964/ 

This is known in accelerator 
lattice design language as a 
“double bend achromat” 
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Double Bend Achromat (approximate) 

§  You calculated constraints for the double bend achromat 
in your homework last night 

Keep lowest-order terms in θ, including θ2 in upper right term since ρθ=L 
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Double Bend Achromat (approximate) 

MDBA =

MDBA =

0
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Double Bend Achromat (approximate) 

§  The periodic solutions for dispersion for the general M 
matrix were derived in class and the text 

§  It turns out that the      equation is satisfied automatically! 
§  This is a consequence of the mirror symmetry of the system 

§  The     equation is satisfied if D=0: 
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Double Bend Achromat 

L = l = 2 m � = 0.01 rad f =
L+ 2l

4
= 1.5 m (KLquad) = 0.667 m�1

�̂ = 2f⇥ = 0.03 m

Exact DBA : f =

l

2

+

⇤

2

tan(⇥/2) �̂ = ⇤(1� cos ⇥) + l sin ⇥

§  DBA is also known as a Chasman-Green lattice 
§  Used in early third-generation light sources (e.g. NSLS at BNL) 
§  More after we discuss synchrotron radiation,     functions H
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Triple Bend Achromat Cell (ALS at LBL) 

L. Yang et al, Global Optimization of an Accelerator Lattice Using Multiobjective Genetic Algorithms, 2009 

Good reasons to minimize integral of dispersion (next week) 
Extra quadrupoles help with matching at ends of cell, αx,y=0 


