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A Brief Discussion of Observables 

§  We have discussed a lot about the (linearized) motion of 
individual particles through our accelerator lattice. In 1D: 

§  But we usually observe RMS properties of the beam, such 
as by fitting the observed beam size to a Gaussian 

§  How do we connect the single-particle linear dynamics 
matrix M to the observables like       ? 

✓
x

x

0

◆

2

= M

✓
x

x

0

◆

1

�

2
x

= hhx2i � hxi2i

�2
x



3 T. Satogata / January 2017          USPAS Accelerator Physics 

Beam Size Evolution 

§  Ignore beam centroid offsets to make the notation easier 
§  Then 
§  We can come up with a clever way to evaluate this: 

§  Multiply and average over all particles  
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Sigma Matrix 

§  This new matrix is called the sigma matrix. It is a property 
of the beam since it includes distribution information: 

§  This describes how observable RMS beam sizes evolve 
as they move through our lattice 

§  This equation can also be used to derive the 3x3 matrix 
equation that shows how                      evolve through a 
set of magnets that have total transport matrix M 

§  Symplecticity, unimodularity of M constrains this “motion”  
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Steering Error in Synchrotron Ring 
§  Short steering error       in a ring with periodic matrix M 

§  Solve for new periodic solution or design orbit (x0,x0’) 

§  Note that (x0=0,x0’=0) is not the periodic solution any more!  
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Steering Error in Synchrotron Ring 

§  We can use the general propagation matrix to find the new 
closed orbit displacement at all locations around the 
synchrotron 

§  This displacement of the closed orbit changes its path length 
§  If the revolution (RF) frequency is constant, then the beam 

energy changes, and there is an extra (small) term in the 
closed orbit displacement 
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Closed orbit and orbit correction 

§  Generally we can integrate all sources of steering error in 
the accelerator to find the general new “closed orbit” 

§  This is now effectively the perturbed design orbit 
§  It is a fixed point of the one-turn map so betatron oscillations 

now occur around this orbit, not (x,x’)=(0,0) 

§  Orbit correction is the process of adding in extra small 
dipole fields to move this closed orbit back to zero 
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RHIC Vertical Difference Orbit 

Predicted difference orbit Measured difference orbit 

Where is the “cusp”? 

§  Ring difference orbits also measure optics 
§  Compare against modeled/design orbit 

§  Integer part of tune readily visible: Q~30 
§  Can easily find reversed, broken BPMs 
§  Can also find (or eliminate) focusing errors 
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Focusing Error in Synchrotron Ring 

§  Short focusing error in a ring with periodic matrix M 
§  Now solve for Tr M to find effects on tune Q 

§  For small errors                               we can expand to find 

§  Can be used for a simple measurement 
 of      at the quadrupole  

§  Quadrupole errors also cause resonances 
    when               : half-integer resonances   
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10.2: Linear coupling resonances 

§  Let’s start following the book and think more in terms of 
differential equations 
§  Easier to add nonlinear potentials or “driving terms” 
§  We are assuming these extra potentials are perturbative 
§  Move to a time basis where the “free” motion is simple 

harmonic oscillators with frequencies (Qx, Qy) 
•  Like Floquet transformation in homework from last week 
•  τ is an azimuthal coordinate around the ring going from 0 to 2π 
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10.2: Linear coupling resonances 

§  Fourier components of linear coupled harmonic oscillators 
§  Errors that create coupling must be periodic in θ	
§  So must be expandable in a Fourier series in θ 
§  Classical mechanics: sigma and pi eigenmodes with two 

separate frequencies 
§  Gives rise to coupled resonance conditions: 

Perturbed linearly coupled motion 

QH +QV = m

|QH �QV | = m

Sum resonance (unstable) 

Difference resonance (stable) 
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