
Wed Jan 25 Computer Lab: Nonlinear Dynamics

1 Octupoles and Fourth Order Resonances

Consider an otherwise linear lattice with a single octupolar nonlinearity:

H = (2πQx)Jx + (2πQy)Jy + V4(x, y; s) (1)

where V4(x, y; s) = 1
24
O(s)(x4 − 4x2y2 + y4) and O(s) = −b3(s)/Bρ.

1. Expand V4 in action-angle coordinates, x =
√

2Jx cosφx and y =
√

2Jy cosφy. What

resonances does the octupole drive?

2. There are some terms that will arise that have no angular dependence. What physical
significance do these terms have?

3. Expand into Fourier harmonics and assume that the tune is near the 4νx = l resonance.
Find the fixed points of this resonance; which are stable fixed points and which are
unstable?

4. Bonus: Calculate the resonance island widths and frequency of small oscillations
around the stable fixed points in terms of the octupole strength.

2 Computer Lab: Nonlinear Dynamics

In a Java-enabled web browser, go to the URL http://www.toddsatogata.net/2011-USPAS/Java/.
Within this directory are some simple Java programs and tutorials that are meant to demon-
strate aspects of accelerator nonlinear dynamics. You will usually have to type in a number
of turns to track and hit return before starting to click in areas to launch particles. Todd
should demonstrate at the start of the lab.

3 The Henon Map

http://www.toddsatogata.net/2011-USPAS/Java/henon.html

Open the Henon map Java example in the URL above and play with it a bit. Clicking in the
black area at the center of the screen will “launch” particles to be tracked through a simple
motion that is similar to a linear ring with a single sextupole. The normalized coordinates
(x, x′) are displayed once per iteration of the map in a Poincaré section. This is among
the simplest of nonlinear maps, a rotation with a kick, so it has been extensively studied
by dynamicists. Set the number of iterations to 1000; this will track 1000 “turns” for each
launched particle.

1. Set b2 = 0 and track a particles for several different tune values Q. Why does the
motion always appear pretty much the same? What happens when you set the tune to
a low-order rational number, like 0.25?
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2. Keep Q = 0.25 and start raising b2. Around what values of b2 do you start seeing some-
thing new happening for large-amplitude particles? Are the tunes for these particles
increasing or decreasing from 0.25?

3. Set the tune near Q = 1/3 and raise the sextupole strength to about b2 = 0.2. Compare
the motion to motino that we discussed in class. What happens when you move the
tune to the other side of Q = 1/3, and why?

4. Set the tune to Q = 0.252 and gradually raise b2 from near zero by increments of 0.2
from 0–2. How does the phase space change? Bonus: what order in sextupole strength
drives the observed resonance?

5. Set the sextupole strength to b2 = 0.5 and find the separatrix. Change the number of
iterations to 100 and track near and away from the separatrix. From this can you infer
the period of the particle motion around the separatrix?

4 The Henon Map with Damping

http://www.toddsatogata.net/2011-USPAS/Java/henon3.html

In electron rings, there is synchrotron radiation damping, so particles tend to damp to the
closed orbit. This can be included in the nonlinear dynamics simulation, along with sources
of noise, to show how particles can damp into resonance islands instead of onto the closed
orbit.

1. Set the tune Q to 0.254 and δ to 0.001. Launch a few particles to observe that you have
damping turned on. Here the damping delta is very strong.

2. Gradually raise b2 from near zero by increments of 0.2 from 0–2. How does the phase
space change now? Note that the resonance islands can become attractors even in the
presence of relatively strong damping, so they are really stable fixed points.

5 Octupoles and Decapoles

http://www.toddsatogata.net/2011-USPAS/Java/odo.html

We have looked at sextupoles, so what about octupoles and decapoles? This exercise will
also introduce Poincaré plots in action-angle coordinates instead of the normalized (x, x′)
coordinates we have been using. There is also tune modulation in this simulation that we
should turn off; set the number of iterations to about 200, q to 0, Tm to 1, b1b to 0, and
b1q to 0.

1. Set the tune Q = 0.193, and b3 and b4 (octupole and decapole strengths) to zero.
Tracking particles now gives horizontal lines, where the horizontal axis is phase (going
from 0 to 2π), and the vertical axis is action J .

2. Set the octupole and decapole strengths to 0.1. How has the phase space changed?
Locate the fifth-order resonance islands. How do they change when you change the
octupole and decapole strengths? The detuning (or location of the islands) is driven to
first order in the octupole strength, while the resonance strength itself (5Qx) is driven
to first order in the decapole strength.
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6 Chirikov Resonance Overlap and Beam-Beam

http://www.toddsatogata.net/2011-USPAS/Java/beamtune.html Open the beam-beam
map Java example in the URL above and play with it a bit. This is a simplified model of
the beam-beam interaction of two beams as we will discuss in class; you can think of it as
a nonlinear kick from an oncoming Gaussian beam. Keeping the tune at Q = 0.331, set
the beam-beam tune shift ξ to zero, and click within the black area to launch particles and
produce Poincaré plots. With no nonlinearity, these are all horizontal lines, consistent with
constant action.

1. Produce phase space plots by gradually increasing ξ by 0.001. With What ξ do you
start to see resonance islands?

2. Vary ξ up to about 0.03. How do the resonance island locations and widths seem to
scale with ξ? What other harmonics of phase space distortion appear at small, medium,
and large amplitudes?

3. As ξ gets even larger, you will see more and more resonance islands appear at small
amplitudes. These islands remain small, but at some point ξ is large enough that
resonances start to overlap, and stochastic motion occurs consistent with the Chirikov
overlap criterion. Experimentally find the lowest value of ξ where stochasticity occurs
to two significant figures. (Hint: It’s between 0 and 1.)
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