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16: Routes to Chaos

(perhaps yet another self-referential lecture)
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Happy birthday to Irving Langmuir (Nobel 1932) and Rudolf Méssbauer (Nobel 1961)!
Happy National Hot Chocolate Day and Hell Is Freezing Over Day!
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.;leffers?on Lab

Review: 1D Beam-Beam (Steve, yesterday)
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D. Hofstadter: “... an eerie type of
chaos ... just behind a facade of
order — and yet, deep inside the
chaos lurks an even eerier type of
order.”
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Review: 1D Beam-Beam

= 1D beam-beam dynamics are surprisingly tractable
= Can predict where isolated resonances are located
* Lecture yesterday and homework

= Can predict other isolated resonance properties
* N-turn Hamiltonians give “island tunes”, resonance widths

Tune, 6 /W\/W\

Q(a)

Isolated resonance

n
vagp/o

: . . . ,  Can we predict the onset
6 of chaos, even roughly?

0 Scaled betatron amplitude x/o
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16.1: Resonance overlap

= \We have evaluated isolated resonances using the n-turn

action-angle Kobayashi Hamiltonian where @, — P«
n

H, = 21 (QO— %) J + 21 U(J) — 20 Vo (J) cos(no)

] \ J \ J
Y | |

Small-amplitude  U”(J): detuning V| (J): resonance driving
frequency

= Here we had assumed that all other resonances either
= have small V, (so their widths are small enough to ignore) or

= their Hamiltonian terms phase average to near zero over
many ierations of this map (over many turns)
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16.1: Resonance overlap

= \We have evaluated isolated resonances using the n-turn

action-angle Kobayashi Hamiltonian where @, — P«
n

H, = 21 (QO— 3) J + 21 U(J) — 20 Vo (J) cos(no)
s \ )

Y f — 2w€V (J) cos(mo)

Small-amplitude  U”(J): detuning |
Tune, G/WVW/\
I\
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0Scaled betatron amplitude x/oc ©
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Beam-beam shifted tune, Q(a) = Qo+ U’
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Fig 16.1: Resonance Overlap
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16.1: Resonance overlap: Chirikov

= What happens when this assumption breaks down?
= Resonances approach the point of overlapping

= Separatrices are the first to interact

» But separatrices have infinite period and therefore are infinitely
vulnerable to perturbation

» Chirikov hypothesized that chaos emerges when nearby
resonance widths are large enough that they overlap

' == This is calculable and verifiable

§* A Universal Instability of Many-Dimensional Oscillator
. Systems” — Physics Reports 52 5, May 1979, pp. 263-379.

= 5000+ citations: a “famous” paper and surprisingly readable
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16.1: Chirikov Overlap and the Standard Map

Chaotic
resonance o
overlap: — |"%
separatrix :
becomes
chaotic

“Isolated”
resonances
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Beam-beam shifted tune, Q(a) = Qo+ U’

Whoa, Wait a sec: ¢=0.2 could be stable?
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EIC Beam-Beam Parameters (European Stragegy Submission)

design eRHIC JLEIC
parameter proton electron proton electron
center-of-mass energy [GeV] 105 44.7

energy [GeV] 275 10 100 5
number of bunches 1320 3228
particles per bunch [101] 6.0 15.1 0.98 3.7
beam current [A] 1.0 2.5 0.75 2.8
horizontal emittance [nm] 9.2 20.0 4.7 5.5
vertical emittance [nm)] 1.3 1.0 0.94 1.1
B2 [cm] 90 42 6 5.1
B [em] 4.0 5.0 1.2 1
tunes (Q, Q) 315/.305 .08/.06 .081/.132 .53/.567
hor. beam-beam parameter 0.013 0.064 0.015 0.068
vert. beam-beam parameter 0.007 0.1 0.015 0.068
IBS growth time hor./long. [min] 126/120 n/a 0.7/2.3 n/a
synchrotron radiation power [MW]| n/a 9.2 n/a 2.7
bunch length [cm] 5 1.9 1 1
hourglass and crab reduction factor 0.87 0.87

peak luminosity [103* cm 257! 1.05 2.1
integrated luminosity /week [fb™1] 4.51 9.0
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16.2: 6D Motion and Tune Modulation

= \We have been (understandably) rather naive
= This is a perfect 1D uncoupled nonlinear model
. B'L
» Reality (aside from noise) Az’ = (Bp)
= Dispersion couples longitudinal and transverse motion
* Almost always have to bend the beam somewhere
» Off-center motion in quadrupoles also gives dipole “feed-down”
= Coupling couples transverse motion
* Quadrupoles have random rotations relative to design plane
= Sextupoles are necessary (mostly)
« Chromaticity correction in large accelerators

X

= Any coupling adds different frequencies to our system
= Tune modulation, e.9. Qg = Qoo + ¢ sin(27Qst)
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16.2: Tune modulation

» The isolated resonance Kobayashi Hamiltonian was

H, = 21 (QO— %) J + 2n€U(J) — 20 Vo (J) cos(no)
Qo = Qoo + ¢ sin(27Qt) \

= Modulation of the tune looks like a time-dependent driving
term

= Poincare and periodicity asides, large-N-turn maps

» To first order, the phase modulation also appears in the
resonance driving term!

» Phase-modulated pendulum: Mathieu equation

» Todd’s dissertation: hitp://www.toddsatogata.net/Thesis/
= Sidebands and sideband overlap leading to chaotic motion
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Figure 16.2 Simulated phase space structure due to one round beam-beam
kick of strength £ = 0.0042 (a), and £ = 0.006 (b), with the parameters of
Equation 16.19. The modest increase in £ moves the tune modulation side-
bands closer together, and dramatically broadens the chaotic sea, allowing

Qo = Qoo + g sin(2rQt) q=0.001 Qs=0.00515

) JSA
Jfoerson 15) T. Satogata / January 2019 USPAS Accelerator Physics 13 @ @



Amplitude, a/o Amplitude, a/o
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Figure 15.4 Six island chains from the simulation of a single round beam-
beam interaction of strength & = 0.0042 (a), and & = 0.006 (b), with a base
tune of @y = 0.331 [40]. The amplitude width of the islands increases as
the chain moves to a larger resonance amplitude when ¢ is increased. (See
also Figure 16.2.)
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Tune Modulation Frequency Scale

» Remember, tune modulation is really “just” modulating a
pendulum

= We know kicking around a pendulum near its natural
frequency produces excitement

= What is the natural frequency of resonant motion?
= Remember these are topologically equivalent to pendula
= “Island” tune: Q;<<Qy,
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Slow Tune Modulation: Amplitude Modulation
H, = 21 (QO _ %) J + 2n€U(J) — 20 Vo (J) cos(no)
Qo = Qoo + q sin(27 Q1)

* [f modulation frequency is much lower than island tune

Qs < QI

= then the modulation really looks like a slow variation of Q,
» Nearly adiabatic with respect to the resonance “island” motion
= Amplitudes of resonances “breathe” up and down
= |sland widths also vary because their amplitudes are changing

= Conversely, modulation frequency >> island tune...
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Tune Modulation Diagram
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Figure 16.3 Dynamical zones universally predicted in normalised tune
modulation space (q/Qr,Qar/Qr) for n = 6, with the boundaries defined
in Equation 16.23. The island tune ();, a scale factor on both axes, is a
parameter of central importance.
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E778 Persistant Signal
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Figure 16.4 Turn-by-turn persistent signal data due to beam trapped in
an n = 5 resonance island in the nonlinear dynamics Tevatron experiment
E778 [47, 48]. The resonance is driven by sextupoles. Chirping the operating
point from the amplitude modulation zone into the chaos zone in Figure 16.3
destroys the resonance, and the persistent signal.
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Arnold Diffusion and Integrability

= Thisis still just 1.5
dimensionsl!!

= One dimension plus time

* |n more dimensions, particles
can move along resonance
lines and diffuse in tune space

* A mechanism for long-term
amplitude growth in tracking
and perhaps even reality

* Visualization makes my brain
hurt

Integrability class next door
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Lichtenberg and Lieberman, Jose and Saletan

CLASSICAL
DYNAMICS

A CONTEMPORARY APPROACH

JORGE V. JOSE « EUGENE |. SALETAN
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A.J. Lichtenberg
M. A. Lieberman

Second Edition
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