USPAS Accelerator Physics 2019 Northern Illinois University and UT-Batelle

16: Routes to Chaos (perhaps yet another self-referential lecture)

Todd Satogata (Jefferson Lab and ODU) / satogata@jlab.org
Steve Peggs (BNL) / peggs@bnl.gov

Bhawin Dhital (ODU) / bdhit001@odu.edu and Kiel Hock (BNL) / khock@bnl.gov http://www.toddsatogata.net/2019-USPAS

Happy birthday to Irving Langmuir (Nobel 1932) and Rudolf Mössbauer (Nobel 1961)!

Happy National Hot Chocolate Day and Hell Is Freezing Over Day!

Review: 1D Beam-Beam (Steve, yesterday)

D. Hofstadter: "... an eerie type of chaos ... just behind a facade of order – and yet, deep inside the chaos lurks an even eerier type of order."

Regular non-resonant Q = 0.330beam-beam parameter xi = 0.132Stochastic chaos Regular resonant

Rapidly divergent (multipoles)

Review: 1D Beam-Beam

- 1D beam-beam dynamics are surprisingly tractable
 - Can predict where isolated resonances are located
 - Lecture yesterday and homework
 - Can predict other isolated resonance properties
 - N-turn Hamiltonians give "island tunes", resonance widths

16.1: Resonance overlap

We have evaluated isolated resonances using the n-turn action-angle Kobayashi Hamiltonian where $Q_0 - \frac{p}{r} \ll 1$

$$H_n = 2\pi \left(Q_0 - \frac{p}{n}\right)J + 2\pi \xi U(J) - 2\pi \xi V_n(J)\cos(n\phi)$$

frequency

Small-amplitude U''(J): detuning $V_n(J)$: resonance driving

- Here we had assumed that all other resonances either
 - have small V_n (so their widths are small enough to ignore) or
 - their Hamiltonian terms phase average to near zero over many ierations of this map (over many turns)

16.1: Resonance overlap

• We have evaluated isolated resonances using the n-turn action-angle Kobayashi Hamiltonian where $Q_0 - \frac{p}{n} \ll 1$

$$H_n = 2\pi \left(Q_0 - \frac{p}{n}\right)J + 2\pi \xi U(J) - 2\pi \xi V_n(J)\cos(n\phi) - 2\pi \xi V_m(J)\cos(m\phi)$$

Small-amplitude U"(J): detuning

 0 Scaled betatron amplitude x/ σ 6

T. Satogata / January 2019

USPAS Accelerator Physics

Fig 16.1: Resonance Overlap

16.1: Resonance overlap: Chirikov

- What happens when this assumption breaks down?
 - Resonances approach the point of overlapping
 - Separatrices are the first to interact
 - But separatrices have infinite period and therefore are infinitely vulnerable to perturbation
- Chirikov hypothesized that chaos emerges when nearby resonance widths are large enough that they overlap
 - This is calculable and verifiable
 - <u>"A Universal Instability of Many-Dimensional Oscillator</u>
 <u>Systems"</u> Physics Reports **52** 5, May 1979, pp. 263-379.
 - 5000+ citations: a "famous" paper and surprisingly readable

16.1: Chirikov Overlap and the Standard Map

Chaotic resonance overlap: — separatrix becomes chaotic

RF motion with large Qs!

Whoa, Wait a sec: ξ =0.2 could be stable?

EIC Beam-Beam Parameters (European Stragegy Submission)

design	eRHIC		JLEIC	
parameter	proton	electron	proton	electron
center-of-mass energy [GeV]	105		44.7	
m energy~[GeV]	275	10	100	5
number of bunches	1320		3228	
particles per bunch $[10^{10}]$	6.0	15.1	0.98	3.7
beam current [A]	1.0	2.5	0.75	2.8
horizontal emittance [nm]	9.2	20.0	4.7	5.5
vertical emittance [nm]	1.3	1.0	0.94	1.1
$eta_x^* \; [ext{cm}]$	90	42	6	5.1
$eta_u^* \; [ext{cm}]$	4.0	5.0	1.2	1
tunes (Q_x, Q_y)	.315/.305	.08/.06	.081/.132	.53/.567
hor. beam-beam parameter	0.013	0.064	0.015	0.068
vert. beam-beam parameter	0.007	0.1	0.015	0.068
IBS growth time hor./long. [min]	126/120	n/a	0.7/2.3	n/a
synchrotron radiation power [MW]	n/a	9.2	n/a	2.7
bunch length [cm]	5	1.9	1	1
hourglass and crab reduction factor	0.87		0.87	
peak luminosity $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1.05		2.1	
integrated luminosity/week [fb ⁻¹]	4.51		9.0	

16.2: 6D Motion and Tune Modulation

- We have been (understandably) rather naive
 - This is a perfect 1D uncoupled nonlinear model
- Reality (aside from noise)

$$\Delta x' = \frac{B'L}{(B\rho)}x$$

- Dispersion couples longitudinal and transverse motion
 - Almost always have to bend the beam somewhere
 - Off-center motion in quadrupoles also gives dipole "feed-down"
- Coupling couples transverse motion
 - Quadrupoles have random rotations relative to design plane
- Sextupoles are necessary (mostly)
 - Chromaticity correction in large accelerators
- Any coupling adds different frequencies to our system
 - Tune modulation, e.g. $Q_0 = Q_{00} + q \, \sin(2\pi Q_s t)$

16.2: Tune modulation

The isolated resonance Kobayashi Hamiltonian was

$$H_n = 2\pi \left(Q_0 - \frac{p}{n} \right) J + 2\pi \xi U(J) - 2\pi \xi V_n(J) \cos(n\phi)$$

$$Q_0 = Q_{00} + q \sin(2\pi Q_s t)$$

- Modulation of the tune looks like a time-dependent driving term
 - Poincare and periodicity asides, large-N-turn maps
- To first order, the phase modulation also appears in the resonance driving term!
 - Phase-modulated pendulum: Mathieu equation
 - Todd's dissertation: http://www.toddsatogata.net/Thesis/
 - Sidebands and sideband overlap leading to chaotic motion

Amplitude, a/σ

Amplitude, a/σ

Figure 16.2 Simulated phase space structure due to one round beam-beam kick of strength $\xi = 0.0042$ (a), and $\xi = 0.006$ (b), with the parameters of Equation 16.19. The modest increase in ξ moves the tune modulation sidebands closer together, and dramatically broadens the chaotic sea, allowing

$$Q_0 = Q_{00} + q \sin(2\pi Q_s t)$$
 q = 0.001 Qs=0.00515

Figure 15.4 Six island chains from the simulation of a single round beambeam interaction of strength $\xi = 0.0042$ (a), and $\xi = 0.006$ (b), with a base tune of $Q_0 = 0.331$ [40]. The amplitude width of the islands increases as the chain moves to a larger resonance amplitude when ξ is increased. (See also Figure 16.2.)

Tune Modulation Frequency Scale

- Remember, tune modulation is really "just" modulating a pendulum
 - We know kicking around a pendulum near its natural frequency produces excitement
 - What is the natural frequency of resonant motion?
 - Remember these are topologically equivalent to pendula
 - "Island" tune: Q_I<<Q₀₀

Slow Tune Modulation: Amplitude Modulation

$$H_n = 2\pi \left(Q_0 - \frac{p}{n} \right) J + 2\pi \xi U(J) - 2\pi \xi V_n(J) \cos(n\phi)$$
$$Q_0 = Q_{00} + q \sin(2\pi Q_s t)$$

If modulation frequency is much lower than island tune

$$Q_s \ll Q_I$$

- then the modulation really looks like a slow variation of Q₀
 - Nearly adiabatic with respect to the resonance "island" motion
 - Amplitudes of resonances "breathe" up and down
 - Island widths also vary because their amplitudes are changing
- Conversely, modulation frequency >> island tune...

Tune Modulation Diagram

Tune modulation normalized frequency, Q_M/Q_I

Figure 16.3 Dynamical zones universally predicted in normalised tune modulation space $(q/Q_I, Q_M/Q_I)$ for n=6, with the boundaries defined in Equation 16.23. The island tune Q_I , a scale factor on both axes, is a parameter of central importance.

E778 Persistant Signal

Figure 16.4 Turn-by-turn persistent signal data due to beam trapped in an n=5 resonance island in the nonlinear dynamics Tevatron experiment E778 [47, 48]. The resonance is driven by sextupoles. Chirping the operating point from the *amplitude modulation* zone into the *chaos* zone in Figure 16.3 destroys the resonance, and the persistent signal.

Arnold Diffusion and Integrability

- This is still just 1.5 dimensions!!
 - One dimension plus time
- In more dimensions, particles can move along resonance lines and diffuse in tune space
- A mechanism for long-term amplitude growth in tracking and perhaps even reality
- Visualization makes my brain hurt
- Integrability class next door

Lichtenberg and Lieberman, Jose and Saletan

